flying-balls/collisions.cc
Karma Riuk a424fec9a9 Now when polygons collide, they get moved by the overlap to ensure that
they don't get stuck in the following frames, it works very well and
Carza is happy :))))))
2023-05-19 15:24:11 +02:00

259 lines
7.7 KiB
C++

#include "collisions.h"
#include "game.h"
#include <algorithm>
#include <cassert>
#include <iostream>
#include <vector>
struct vertex {
vec2d v, p1, p2;
};
typedef std::pair<vec2d, vec2d> segment;
enum Orientation {
COLINEAR,
CLOCKWISE,
COUNTER_CLOCKWISE,
};
static std::vector<vertex> vertices_of(polygon& p) {
std::vector<vertex> vertices;
vertices.reserve(p.global_points.size());
// i = 1 and <= points.size() cuz { -1 % n = -1 } et c'est chiant
// so start from 1, "overflow" with i = points.size() and gg
for (uint i = 1; i <= p.global_points.size(); ++i)
vertices.push_back({
p.global_points[i % p.points.size()],
p.global_points[(i + 1) % p.points.size()],
p.global_points[(i - 1) % p.points.size()],
});
return vertices;
}
// Given three collinear points p, q, r, the function checks if
// point q lies on line segment 'pr'
static bool on_segment(vec2d& q, segment& pr) {
return q.x <= std::max(pr.first.x, pr.second.x) &&
q.x >= std::min(pr.first.x, pr.second.x) &&
q.y <= std::max(pr.first.y, pr.second.y) &&
q.y >= std::min(pr.first.y, pr.second.y);
}
static Orientation orientation(vec2d& p, vec2d& q, vec2d& r) {
int v = (q.y - p.y) * (r.x - q.x) - (q.x - p.x) * (r.y - q.y);
if (v == 0)
return COLINEAR;
return v > 0 ? CLOCKWISE : COUNTER_CLOCKWISE;
}
static bool do_intersect(segment s1, segment s2) {
// Find the four orientations needed for general and
// special cases
Orientation o1 = orientation(s1.first, s1.second, s2.first);
Orientation o2 = orientation(s1.first, s1.second, s2.second);
Orientation o3 = orientation(s2.first, s2.second, s1.first);
Orientation o4 = orientation(s2.first, s2.second, s1.second);
// General case
if (o1 != o2 && o3 != o4)
return true;
// Special Cases
// p1, q1 and p2 are collinear and p2 lies on segment p1q1
if (o1 == COLINEAR && on_segment(s2.first, s1))
return true;
// p1, q1 and q2 are collinear and q2 lies on segment p1q1
if (o2 == COLINEAR && on_segment(s2.second, s1))
return true;
// p2, q2 and p1 are collinear and p1 lies on segment p2q2
if (o3 == COLINEAR && on_segment(s1.first, s2))
return true;
// p2, q2 and q1 are collinear and q1 lies on segment p2q2
if (o4 == COLINEAR && on_segment(s1.second, s2))
return true;
return false;
}
static std::vector<segment> edges_of(polygon& p) {
std::vector<segment> ret;
ret.reserve(p.points.size());
for (uint i = 0; i < p.points.size(); ++i)
ret.push_back(
{p.global_points[i], p.global_points[(i + 1) % p.points.size()]});
return ret;
}
static collision penetration(segment& edge, vertex& vertex, vec2d& d) {
collision ret{true};
ret.impact_point = vertex.v;
vec2d n = (edge.second - edge.first).orthogonal();
ret.n = vec2d::normalize(n);
if (vec2d::dot(n, d) > 0)
ret.n *= -1;
vec2d temp = vertex.v - edge.first;
ret.overlap = vec2d::dot(temp, ret.n) * -ret.n;
ret.overlap += .1 * delta * -ret.n;
// std::cout << "-------------- Impact: penetration --------------"
// << std::endl;
return ret;
}
static collision parallel(segment edge_p, segment edge_q, vec2d d) {
collision ret{true};
vec2d line_start = edge_p.first;
vec2d base = vec2d::normalize(edge_p.second - line_start);
std::pair<double, vec2d> proj_p1, proj_p2, proj_q1, proj_q2;
proj_p1 = {0, edge_p.first};
proj_p2 = {vec2d::dot(edge_p.second - line_start, base), edge_p.second};
proj_q1 = {vec2d::dot(edge_q.first - line_start, base), edge_q.first};
proj_q2 = {vec2d::dot(edge_q.second - line_start, base), edge_q.second};
std::pair<double, vec2d>*p_min, *q_min, *p_max, *q_max;
if (proj_p1.first < proj_p2.first) {
p_min = &proj_p1;
p_max = &proj_p2;
} else {
p_min = &proj_p2;
p_max = &proj_p1;
}
if (proj_q1.first < proj_q2.first) {
q_min = &proj_q1;
q_max = &proj_q2;
} else {
q_min = &proj_q2;
q_max = &proj_q1;
}
vec2d min = p_min->first < q_min->first ? q_min->second : p_min->second;
vec2d max = p_max->first < q_max->first ? p_max->second : q_max->second;
ret.impact_point = (min + max) / 2;
ret.n = base.orthogonal();
if (vec2d::dot(ret.n, d) > 0)
ret.n *= -1;
vec2d temp = ret.impact_point - edge_p.first;
ret.overlap = vec2d::dot(temp, ret.n) * -ret.n;
ret.overlap += .1 * delta * -ret.n;
// std::cout << "-------------- Impact: parallel --------------" <<
// std::endl;
return ret;
}
static bool are_vecs_parallel(vec2d s1, vec2d s2) {
return std::abs(vec2d::dot(vec2d::normalize(s1), vec2d::normalize(s2))) >
.99;
}
static double distance_between_parallel_segments(segment s1, segment s2) {
double area = vec2d::cross(s1.first - s2.first, s2.second - s2.first);
double base = vec2d::norm(s2.second - s2.first);
return std::abs(area / base);
}
#define SMALLEST_DIST 3
static bool are_edges_colinear(segment& e1, segment& e2) {
vec2d e1_vec = e1.second - e1.first;
vec2d e2_vec = e2.second - e2.first;
return are_vecs_parallel(e1_vec, e2_vec) &&
distance_between_parallel_segments(e1, e2) < SMALLEST_DIST;
}
static collision vertex_edge_collision(polygon& p, polygon& q) {
std::vector<vertex> vertices_p = vertices_of(p);
std::vector<segment> edges_q = edges_of(q);
vec2d d = q.centroid() - p.centroid();
segment edge_p1, edge_p2;
bool col1, col2;
for (auto& vertex : vertices_p)
for (auto& edge_q : edges_q) {
edge_p1 = {vertex.v, vertex.p1};
edge_p2 = {vertex.v, vertex.p2};
col1 = do_intersect(edge_q, edge_p1);
col2 = do_intersect(edge_q, edge_p2);
if (col1 || col2) {
if (are_edges_colinear(edge_q, edge_p1))
return parallel(edge_q, edge_p1, d);
if (are_edges_colinear(edge_q, edge_p2))
return parallel(edge_q, edge_p2, d);
if (col1 && col2)
return penetration(edge_q, vertex, d);
}
}
return {false};
}
static collision vertex_vertex_collision(polygon& p, polygon& q) {
std::vector<vertex> vertices_p = vertices_of(p);
std::vector<segment> edges_q = edges_of(q);
vec2d d = q.centroid() - p.centroid();
for (auto& vertex : vertices_p)
for (auto& edge_q : edges_q) {
if (do_intersect(edge_q, {vertex.v, vertex.p1})) {
vec2d edge_q_vec = edge_q.second - edge_q.first;
vec2d n = vec2d::normalize(edge_q_vec.orthogonal());
if (vec2d::dot(n, d) > 0)
n *= -1;
vec2d temp = vertex.v - edge_q.first;
vec2d overlap = vec2d::dot(temp, n) * -n;
overlap += .1 * delta * -n;
// std::cout
// << "-------------- Impact: angle in angle --------------"
// << std::endl;
return {true, n, vertex.v, overlap};
}
}
return {false};
}
static collision convex_collides(polygon& p, polygon& q) {
collision ret;
if ((ret = vertex_edge_collision(p, q)).collides)
return ret;
if ((ret = vertex_edge_collision(q, p)).collides) {
ret.n *= -1;
ret.overlap *= -1;
return ret;
}
if ((ret = vertex_vertex_collision(p, q)).collides)
return ret;
if ((ret = vertex_vertex_collision(q, p)).collides) {
ret.n *= -1;
ret.overlap *= -1;
}
return ret;
}
collision collides(polygon& p, polygon& q) {
return convex_collides(p, q);
}