mirror of
https://github.com/karma-riuk/hdr_esim.git
synced 2025-01-18 08:58:49 +01:00
Reformated the project to make it more readable (to me)
This commit is contained in:
parent
de6743207d
commit
4738ae7444
@ -1,72 +1,74 @@
|
||||
#pragma once
|
||||
|
||||
#include <esim/common/types.hpp>
|
||||
#include <deque>
|
||||
#include <esim/common/types.hpp>
|
||||
#include <ze/common/time_conversions.hpp>
|
||||
|
||||
namespace event_camera_simulator {
|
||||
|
||||
class ImageBuffer
|
||||
{
|
||||
public:
|
||||
ZE_POINTER_TYPEDEFS(ImageBuffer);
|
||||
class ImageBuffer {
|
||||
public:
|
||||
ZE_POINTER_TYPEDEFS(ImageBuffer);
|
||||
|
||||
struct ImageData
|
||||
{
|
||||
ImageData(Image img, Time stamp, Duration exposure_time)
|
||||
: image(img),
|
||||
stamp(stamp),
|
||||
exposure_time(exposure_time) {}
|
||||
struct ImageData {
|
||||
ImageData(Image img, Time stamp, Duration exposure_time)
|
||||
: image(img),
|
||||
stamp(stamp),
|
||||
exposure_time(exposure_time) {}
|
||||
|
||||
Image image;
|
||||
Time stamp;
|
||||
Duration exposure_time; // timestamp since last image (0 if this is the first image)
|
||||
};
|
||||
Image image;
|
||||
Time stamp;
|
||||
Duration exposure_time; // timestamp since last image (0 if this is
|
||||
// the first image)
|
||||
};
|
||||
|
||||
using ExposureImage = std::pair<Duration, Image>;
|
||||
using ExposureImage = std::pair<Duration, Image>;
|
||||
|
||||
// Rolling image buffer of mazimum size 'buffer_size_ns'.
|
||||
ImageBuffer(Duration buffer_size_ns)
|
||||
: buffer_size_ns_(buffer_size_ns) {}
|
||||
// Rolling image buffer of mazimum size 'buffer_size_ns'.
|
||||
ImageBuffer(Duration buffer_size_ns): buffer_size_ns_(buffer_size_ns) {}
|
||||
|
||||
void addImage(Time t, const Image& img);
|
||||
void addImage(Time t, const Image& img);
|
||||
|
||||
std::deque<ImageData> getRawBuffer() const { return data_; }
|
||||
std::deque<ImageData> getRawBuffer() const {
|
||||
return data_;
|
||||
}
|
||||
|
||||
size_t size() const { return data_.size(); }
|
||||
size_t size() const {
|
||||
return data_.size();
|
||||
}
|
||||
|
||||
Duration getExposureTime() const { return buffer_size_ns_; }
|
||||
Duration getExposureTime() const {
|
||||
return buffer_size_ns_;
|
||||
}
|
||||
|
||||
private:
|
||||
Duration buffer_size_ns_;
|
||||
std::deque<ImageData> data_;
|
||||
};
|
||||
private:
|
||||
Duration buffer_size_ns_;
|
||||
std::deque<ImageData> data_;
|
||||
};
|
||||
|
||||
/*
|
||||
* The CameraSimulator takes as input a sequence of stamped images,
|
||||
* assumed to be sampled at a "sufficiently high" framerate and with
|
||||
* floating-point precision, and treats each image as a measure of
|
||||
* irradiance.
|
||||
* From this, it simulates a real camera, including motion blur.
|
||||
*
|
||||
* @TODO: simulate a non-linear camera response curve, shot noise, etc.
|
||||
*/
|
||||
class CameraSimulator {
|
||||
public:
|
||||
CameraSimulator(double exposure_time_ms)
|
||||
: exposure_time_(ze::secToNanosec(exposure_time_ms / 1000.0)) {
|
||||
buffer_.reset(new ImageBuffer(exposure_time_));
|
||||
}
|
||||
|
||||
/*
|
||||
* The CameraSimulator takes as input a sequence of stamped images,
|
||||
* assumed to be sampled at a "sufficiently high" framerate and with
|
||||
* floating-point precision, and treats each image as a measure of
|
||||
* irradiance.
|
||||
* From this, it simulates a real camera, including motion blur.
|
||||
*
|
||||
* @TODO: simulate a non-linear camera response curve, shot noise, etc.
|
||||
*/
|
||||
class CameraSimulator
|
||||
{
|
||||
public:
|
||||
CameraSimulator(double exposure_time_ms)
|
||||
: exposure_time_(ze::secToNanosec(exposure_time_ms / 1000.0))
|
||||
{
|
||||
buffer_.reset(new ImageBuffer(exposure_time_));
|
||||
}
|
||||
bool imageCallback(
|
||||
const Image& img, Time time, const ImagePtr& camera_image
|
||||
);
|
||||
|
||||
bool imageCallback(const Image& img, Time time,
|
||||
const ImagePtr &camera_image);
|
||||
|
||||
private:
|
||||
ImageBuffer::Ptr buffer_;
|
||||
const Duration exposure_time_;
|
||||
};
|
||||
private:
|
||||
ImageBuffer::Ptr buffer_;
|
||||
const Duration exposure_time_;
|
||||
};
|
||||
|
||||
} // namespace event_camera_simulator
|
||||
|
@ -4,51 +4,47 @@
|
||||
|
||||
namespace event_camera_simulator {
|
||||
|
||||
/*
|
||||
* The EventSimulator takes as input a sequence of stamped images,
|
||||
* assumed to be sampled at a "sufficiently high" framerate,
|
||||
* and simulates the principle of operation of an idea event camera
|
||||
* with a constant contrast threshold C.
|
||||
* Pixel-wise intensity values are linearly interpolated in time.
|
||||
*
|
||||
* The pixel-wise voltages are reset with the values from the first image
|
||||
* which is passed to the simulator.
|
||||
*/
|
||||
class EventSimulator
|
||||
{
|
||||
public:
|
||||
/*
|
||||
* The EventSimulator takes as input a sequence of stamped images,
|
||||
* assumed to be sampled at a "sufficiently high" framerate,
|
||||
* and simulates the principle of operation of an idea event camera
|
||||
* with a constant contrast threshold C.
|
||||
* Pixel-wise intensity values are linearly interpolated in time.
|
||||
*
|
||||
* The pixel-wise voltages are reset with the values from the first image
|
||||
* which is passed to the simulator.
|
||||
*/
|
||||
class EventSimulator {
|
||||
public:
|
||||
struct Config {
|
||||
double Cp;
|
||||
double Cm;
|
||||
double sigma_Cp;
|
||||
double sigma_Cm;
|
||||
Duration refractory_period_ns;
|
||||
bool use_log_image;
|
||||
double log_eps;
|
||||
};
|
||||
|
||||
struct Config
|
||||
{
|
||||
double Cp;
|
||||
double Cm;
|
||||
double sigma_Cp;
|
||||
double sigma_Cm;
|
||||
Duration refractory_period_ns;
|
||||
bool use_log_image;
|
||||
double log_eps;
|
||||
};
|
||||
using TimestampImage = cv::Mat_<ze::real_t>;
|
||||
|
||||
using TimestampImage = cv::Mat_<ze::real_t>;
|
||||
EventSimulator(const Config& config)
|
||||
: config_(config),
|
||||
is_initialized_(false),
|
||||
current_time_(0) {}
|
||||
|
||||
EventSimulator(const Config& config)
|
||||
: config_(config),
|
||||
is_initialized_(false),
|
||||
current_time_(0)
|
||||
{}
|
||||
void init(const Image& img, Time time);
|
||||
Events imageCallback(const Image& img, Time time);
|
||||
|
||||
void init(const Image& img, Time time);
|
||||
Events imageCallback(const Image& img, Time time);
|
||||
private:
|
||||
bool is_initialized_;
|
||||
Time current_time_;
|
||||
Image ref_values_;
|
||||
Image last_img_;
|
||||
TimestampImage last_event_timestamp_;
|
||||
cv::Size size_;
|
||||
|
||||
private:
|
||||
bool is_initialized_;
|
||||
Time current_time_;
|
||||
Image ref_values_;
|
||||
Image last_img_;
|
||||
TimestampImage last_event_timestamp_;
|
||||
cv::Size size_;
|
||||
|
||||
Config config_;
|
||||
};
|
||||
Config config_;
|
||||
};
|
||||
|
||||
} // namespace event_camera_simulator
|
||||
|
@ -1,60 +1,60 @@
|
||||
#pragma once
|
||||
|
||||
#include <esim/esim/event_simulator.hpp>
|
||||
#include <esim/esim/camera_simulator.hpp>
|
||||
#include <esim/esim/event_simulator.hpp>
|
||||
#include <esim/visualization/publisher_interface.hpp>
|
||||
|
||||
namespace event_camera_simulator {
|
||||
|
||||
/* The Simulator forwards the simulated images / depth maps
|
||||
* from the data provider to multiple, specialized camera simulators, such as:
|
||||
* (i) event camera simulators that simulate events based on sequences of images
|
||||
* (ii) camera simulators that simulate real cameras
|
||||
* (including motion blur, camera response function, noise, etc.)
|
||||
*
|
||||
* The Simulator then forwards the simulated data to one or more publishers.
|
||||
*/
|
||||
class Simulator
|
||||
{
|
||||
public:
|
||||
Simulator(size_t num_cameras,
|
||||
/* The Simulator forwards the simulated images / depth maps
|
||||
* from the data provider to multiple, specialized camera simulators, such
|
||||
* as: (i) event camera simulators that simulate events based on sequences
|
||||
* of images (ii) camera simulators that simulate real cameras (including
|
||||
* motion blur, camera response function, noise, etc.)
|
||||
*
|
||||
* The Simulator then forwards the simulated data to one or more publishers.
|
||||
*/
|
||||
class Simulator {
|
||||
public:
|
||||
Simulator(
|
||||
size_t num_cameras,
|
||||
const EventSimulator::Config& event_sim_config,
|
||||
double exposure_time_ms)
|
||||
: num_cameras_(num_cameras),
|
||||
exposure_time_(ze::millisecToNanosec(exposure_time_ms))
|
||||
{
|
||||
for(size_t i=0; i<num_cameras_; ++i)
|
||||
{
|
||||
event_simulators_.push_back(EventSimulator(event_sim_config));
|
||||
camera_simulators_.push_back(CameraSimulator(exposure_time_ms));
|
||||
}
|
||||
}
|
||||
double exposure_time_ms
|
||||
)
|
||||
: num_cameras_(num_cameras),
|
||||
exposure_time_(ze::millisecToNanosec(exposure_time_ms)) {
|
||||
for (size_t i = 0; i < num_cameras_; ++i) {
|
||||
event_simulators_.push_back(EventSimulator(event_sim_config));
|
||||
camera_simulators_.push_back(CameraSimulator(exposure_time_ms));
|
||||
}
|
||||
}
|
||||
|
||||
~Simulator();
|
||||
~Simulator();
|
||||
|
||||
void addPublisher(const Publisher::Ptr& publisher)
|
||||
{
|
||||
CHECK(publisher);
|
||||
publishers_.push_back(std::move(publisher));
|
||||
}
|
||||
void addPublisher(const Publisher::Ptr& publisher) {
|
||||
CHECK(publisher);
|
||||
publishers_.push_back(std::move(publisher));
|
||||
}
|
||||
|
||||
void dataProviderCallback(const SimulatorData& sim_data);
|
||||
void dataProviderCallback(const SimulatorData& sim_data);
|
||||
|
||||
void publishData(const SimulatorData &sim_data,
|
||||
const EventsVector &events,
|
||||
bool camera_simulator_success,
|
||||
const ImagePtrVector &camera_images);
|
||||
void publishData(
|
||||
const SimulatorData& sim_data,
|
||||
const EventsVector& events,
|
||||
bool camera_simulator_success,
|
||||
const ImagePtrVector& camera_images
|
||||
);
|
||||
|
||||
private:
|
||||
size_t num_cameras_;
|
||||
std::vector<EventSimulator> event_simulators_;
|
||||
private:
|
||||
size_t num_cameras_;
|
||||
std::vector<EventSimulator> event_simulators_;
|
||||
|
||||
std::vector<CameraSimulator> camera_simulators_;
|
||||
Duration exposure_time_;
|
||||
std::vector<CameraSimulator> camera_simulators_;
|
||||
Duration exposure_time_;
|
||||
|
||||
std::vector<Publisher::Ptr> publishers_;
|
||||
std::vector<Publisher::Ptr> publishers_;
|
||||
|
||||
ImagePtrVector corrupted_camera_images_;
|
||||
};
|
||||
ImagePtrVector corrupted_camera_images_;
|
||||
};
|
||||
|
||||
} // namespace event_camera_simulator
|
||||
|
@ -88,7 +88,6 @@ namespace event_camera_simulator {
|
||||
<< buffer_->getExposureTime() << std::endl;
|
||||
exposures_file_.close();
|
||||
|
||||
|
||||
*camera_image /= denom;
|
||||
cv::Mat disp;
|
||||
camera_image->convertTo(disp, CV_8U, 255);
|
||||
|
@ -1,119 +1,123 @@
|
||||
#include <esim/esim/event_simulator.hpp>
|
||||
#include <ze/common/random.hpp>
|
||||
#include <glog/logging.h>
|
||||
#include <opencv2/imgproc/imgproc.hpp>
|
||||
#include <ze/common/random.hpp>
|
||||
#include <ze/common/time_conversions.hpp>
|
||||
|
||||
namespace event_camera_simulator {
|
||||
|
||||
void EventSimulator::init(const Image &img, Time time)
|
||||
{
|
||||
VLOG(1) << "Initialized event camera simulator with sensor size: " << img.size();
|
||||
VLOG(1) << "and contrast thresholds: C+ = " << config_.Cp << " , C- = " << config_.Cm;
|
||||
is_initialized_ = true;
|
||||
last_img_ = img.clone();
|
||||
ref_values_ = img.clone();
|
||||
last_event_timestamp_ = TimestampImage::zeros(img.size());
|
||||
current_time_ = time;
|
||||
size_ = img.size();
|
||||
}
|
||||
void EventSimulator::init(const Image& img, Time time) {
|
||||
VLOG(1) << "Initialized event camera simulator with sensor size: "
|
||||
<< img.size();
|
||||
VLOG(1) << "and contrast thresholds: C+ = " << config_.Cp
|
||||
<< " , C- = " << config_.Cm;
|
||||
is_initialized_ = true;
|
||||
last_img_ = img.clone();
|
||||
ref_values_ = img.clone();
|
||||
last_event_timestamp_ = TimestampImage::zeros(img.size());
|
||||
current_time_ = time;
|
||||
size_ = img.size();
|
||||
}
|
||||
|
||||
Events EventSimulator::imageCallback(const Image& img, Time time)
|
||||
{
|
||||
CHECK_GE(time, 0);
|
||||
Image preprocessed_img = img.clone();
|
||||
if(config_.use_log_image)
|
||||
{
|
||||
LOG_FIRST_N(INFO, 1) << "Converting the image to log image with eps = " << config_.log_eps << ".";
|
||||
cv::log(config_.log_eps + img, preprocessed_img);
|
||||
}
|
||||
|
||||
if(!is_initialized_)
|
||||
{
|
||||
init(preprocessed_img, time);
|
||||
return {};
|
||||
}
|
||||
|
||||
// For each pixel, check if new events need to be generated since the last image sample
|
||||
static constexpr ImageFloatType tolerance = 1e-6;
|
||||
Events events;
|
||||
Duration delta_t_ns = time - current_time_;
|
||||
|
||||
CHECK_GT(delta_t_ns, 0u);
|
||||
CHECK_EQ(img.size(), size_);
|
||||
|
||||
for (int y = 0; y < size_.height; ++y)
|
||||
{
|
||||
for (int x = 0; x < size_.width; ++x)
|
||||
{
|
||||
ImageFloatType itdt = preprocessed_img(y, x);
|
||||
ImageFloatType it = last_img_(y, x);
|
||||
ImageFloatType prev_cross = ref_values_(y, x);
|
||||
|
||||
if (std::fabs (it - itdt) > tolerance)
|
||||
{
|
||||
ImageFloatType pol = (itdt >= it) ? +1.0 : -1.0;
|
||||
ImageFloatType C = (pol > 0) ? config_.Cp : config_.Cm;
|
||||
ImageFloatType sigma_C = (pol > 0) ? config_.sigma_Cp : config_.sigma_Cm;
|
||||
if(sigma_C > 0)
|
||||
{
|
||||
C += ze::sampleNormalDistribution<ImageFloatType>(false, 0, sigma_C);
|
||||
constexpr ImageFloatType minimum_contrast_threshold = 0.01;
|
||||
C = std::max(minimum_contrast_threshold, C);
|
||||
Events EventSimulator::imageCallback(const Image& img, Time time) {
|
||||
CHECK_GE(time, 0);
|
||||
Image preprocessed_img = img.clone();
|
||||
if (config_.use_log_image) {
|
||||
LOG_FIRST_N(INFO, 1)
|
||||
<< "Converting the image to log image with eps = "
|
||||
<< config_.log_eps << ".";
|
||||
cv::log(config_.log_eps + img, preprocessed_img);
|
||||
}
|
||||
ImageFloatType curr_cross = prev_cross;
|
||||
bool all_crossings = false;
|
||||
|
||||
do
|
||||
{
|
||||
curr_cross += pol * C;
|
||||
if (!is_initialized_) {
|
||||
init(preprocessed_img, time);
|
||||
return {};
|
||||
}
|
||||
|
||||
if ((pol > 0 && curr_cross > it && curr_cross <= itdt)
|
||||
|| (pol < 0 && curr_cross < it && curr_cross >= itdt))
|
||||
{
|
||||
Duration edt = (curr_cross - it) * delta_t_ns / (itdt - it);
|
||||
Time t = current_time_ + edt;
|
||||
// For each pixel, check if new events need to be generated since the
|
||||
// last image sample
|
||||
static constexpr ImageFloatType tolerance = 1e-6;
|
||||
Events events;
|
||||
Duration delta_t_ns = time - current_time_;
|
||||
|
||||
// check that pixel (x,y) is not currently in a "refractory" state
|
||||
// i.e. |t-that last_timestamp(x,y)| >= refractory_period
|
||||
const Time last_stamp_at_xy = ze::secToNanosec(last_event_timestamp_(y,x));
|
||||
CHECK_GE(t, last_stamp_at_xy);
|
||||
const Duration dt = t - last_stamp_at_xy;
|
||||
if(last_event_timestamp_(y,x) == 0 || dt >= config_.refractory_period_ns)
|
||||
{
|
||||
events.push_back(Event(x, y, t, pol > 0));
|
||||
last_event_timestamp_(y,x) = ze::nanosecToSecTrunc(t);
|
||||
}
|
||||
else
|
||||
{
|
||||
VLOG(3) << "Dropping event because time since last event ("
|
||||
<< dt << " ns) < refractory period ("
|
||||
<< config_.refractory_period_ns << " ns).";
|
||||
}
|
||||
ref_values_(y,x) = curr_cross;
|
||||
}
|
||||
else
|
||||
{
|
||||
all_crossings = true;
|
||||
}
|
||||
} while (!all_crossings);
|
||||
} // end tolerance
|
||||
} // end for each pixel
|
||||
}
|
||||
CHECK_GT(delta_t_ns, 0u);
|
||||
CHECK_EQ(img.size(), size_);
|
||||
|
||||
// update simvars for next loop
|
||||
current_time_ = time;
|
||||
last_img_ = preprocessed_img.clone(); // it is now the latest image
|
||||
for (int y = 0; y < size_.height; ++y) {
|
||||
for (int x = 0; x < size_.width; ++x) {
|
||||
ImageFloatType itdt = preprocessed_img(y, x);
|
||||
ImageFloatType it = last_img_(y, x);
|
||||
ImageFloatType prev_cross = ref_values_(y, x);
|
||||
|
||||
// Sort the events by increasing timestamps, since this is what
|
||||
// most event processing algorithms expect
|
||||
sort(events.begin(), events.end(),
|
||||
[](const Event& a, const Event& b) -> bool
|
||||
{
|
||||
return a.t < b.t;
|
||||
});
|
||||
if (std::fabs(it - itdt) > tolerance) {
|
||||
ImageFloatType pol = (itdt >= it) ? +1.0 : -1.0;
|
||||
ImageFloatType C = (pol > 0) ? config_.Cp : config_.Cm;
|
||||
ImageFloatType sigma_C =
|
||||
(pol > 0) ? config_.sigma_Cp : config_.sigma_Cm;
|
||||
if (sigma_C > 0) {
|
||||
C += ze::sampleNormalDistribution<ImageFloatType>(
|
||||
false,
|
||||
0,
|
||||
sigma_C
|
||||
);
|
||||
constexpr ImageFloatType minimum_contrast_threshold =
|
||||
0.01;
|
||||
C = std::max(minimum_contrast_threshold, C);
|
||||
}
|
||||
ImageFloatType curr_cross = prev_cross;
|
||||
bool all_crossings = false;
|
||||
|
||||
return events;
|
||||
}
|
||||
do {
|
||||
curr_cross += pol * C;
|
||||
|
||||
if ((pol > 0 && curr_cross > it && curr_cross <= itdt)
|
||||
|| (pol < 0 && curr_cross < it && curr_cross >= itdt
|
||||
)) {
|
||||
Duration edt =
|
||||
(curr_cross - it) * delta_t_ns / (itdt - it);
|
||||
Time t = current_time_ + edt;
|
||||
|
||||
// check that pixel (x,y) is not currently in a
|
||||
// "refractory" state i.e. |t-that
|
||||
// last_timestamp(x,y)| >= refractory_period
|
||||
const Time last_stamp_at_xy =
|
||||
ze::secToNanosec(last_event_timestamp_(y, x));
|
||||
CHECK_GE(t, last_stamp_at_xy);
|
||||
const Duration dt = t - last_stamp_at_xy;
|
||||
if (last_event_timestamp_(y, x) == 0
|
||||
|| dt >= config_.refractory_period_ns) {
|
||||
events.push_back(Event(x, y, t, pol > 0));
|
||||
last_event_timestamp_(y, x) =
|
||||
ze::nanosecToSecTrunc(t);
|
||||
} else {
|
||||
VLOG(3)
|
||||
<< "Dropping event because time since last "
|
||||
"event ("
|
||||
<< dt << " ns) < refractory period ("
|
||||
<< config_.refractory_period_ns << " ns).";
|
||||
}
|
||||
ref_values_(y, x) = curr_cross;
|
||||
} else {
|
||||
all_crossings = true;
|
||||
}
|
||||
} while (!all_crossings);
|
||||
} // end tolerance
|
||||
} // end for each pixel
|
||||
}
|
||||
|
||||
// update simvars for next loop
|
||||
current_time_ = time;
|
||||
last_img_ = preprocessed_img.clone(); // it is now the latest image
|
||||
|
||||
// Sort the events by increasing timestamps, since this is what
|
||||
// most event processing algorithms expect
|
||||
sort(
|
||||
events.begin(),
|
||||
events.end(),
|
||||
[](const Event& a, const Event& b) -> bool { return a.t < b.t; }
|
||||
);
|
||||
|
||||
return events;
|
||||
}
|
||||
|
||||
} // namespace event_camera_simulator
|
||||
|
@ -1,143 +1,160 @@
|
||||
#include <esim/common/utils.hpp>
|
||||
#include <esim/esim/simulator.hpp>
|
||||
#include <ze/common/timer_collection.hpp>
|
||||
#include <esim/common/utils.hpp>
|
||||
|
||||
namespace event_camera_simulator {
|
||||
|
||||
DECLARE_TIMER(TimerEventSimulator, timers_event_simulator_,
|
||||
simulate_events,
|
||||
visualization
|
||||
);
|
||||
DECLARE_TIMER(
|
||||
TimerEventSimulator,
|
||||
timers_event_simulator_,
|
||||
simulate_events,
|
||||
visualization
|
||||
);
|
||||
|
||||
Simulator::~Simulator()
|
||||
{
|
||||
timers_event_simulator_.saveToFile("/tmp", "event_simulator.csv");
|
||||
}
|
||||
Simulator::~Simulator() {
|
||||
timers_event_simulator_.saveToFile("/tmp", "event_simulator.csv");
|
||||
}
|
||||
|
||||
void Simulator::dataProviderCallback(const SimulatorData &sim_data)
|
||||
{
|
||||
CHECK_EQ(event_simulators_.size(), num_cameras_);
|
||||
void Simulator::dataProviderCallback(const SimulatorData& sim_data) {
|
||||
CHECK_EQ(event_simulators_.size(), num_cameras_);
|
||||
|
||||
bool camera_simulator_success;
|
||||
bool camera_simulator_success;
|
||||
|
||||
if(sim_data.images_updated)
|
||||
{
|
||||
EventsVector events(num_cameras_);
|
||||
Time time = sim_data.timestamp;
|
||||
// simulate the events and camera images for every sensor in the rig
|
||||
{
|
||||
auto t = timers_event_simulator_[TimerEventSimulator::simulate_events].timeScope();
|
||||
for(size_t i=0; i<num_cameras_; ++i)
|
||||
{
|
||||
events[i] = event_simulators_[i].imageCallback(*sim_data.images[i], time);
|
||||
if (sim_data.images_updated) {
|
||||
EventsVector events(num_cameras_);
|
||||
Time time = sim_data.timestamp;
|
||||
// simulate the events and camera images for every sensor in the rig
|
||||
{
|
||||
auto t = timers_event_simulator_
|
||||
[TimerEventSimulator::simulate_events]
|
||||
.timeScope();
|
||||
for (size_t i = 0; i < num_cameras_; ++i) {
|
||||
events[i] = event_simulators_[i].imageCallback(
|
||||
*sim_data.images[i],
|
||||
time
|
||||
);
|
||||
|
||||
if(corrupted_camera_images_.size() < num_cameras_)
|
||||
{
|
||||
// allocate memory for the corrupted camera images and set them to 0
|
||||
corrupted_camera_images_.emplace_back(std::make_shared<Image>(sim_data.images[i]->size()));
|
||||
corrupted_camera_images_[i]->setTo(0.);
|
||||
if (corrupted_camera_images_.size() < num_cameras_) {
|
||||
// allocate memory for the corrupted camera images and
|
||||
// set them to 0
|
||||
corrupted_camera_images_.emplace_back(
|
||||
std::make_shared<Image>(sim_data.images[i]->size())
|
||||
);
|
||||
corrupted_camera_images_[i]->setTo(0.);
|
||||
}
|
||||
|
||||
camera_simulator_success =
|
||||
camera_simulators_[i].imageCallback(
|
||||
*sim_data.images[i],
|
||||
time,
|
||||
corrupted_camera_images_[i]
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
// publish the simulation data + events
|
||||
{
|
||||
auto t =
|
||||
timers_event_simulator_[TimerEventSimulator::visualization]
|
||||
.timeScope();
|
||||
publishData(
|
||||
sim_data,
|
||||
events,
|
||||
camera_simulator_success,
|
||||
corrupted_camera_images_
|
||||
);
|
||||
}
|
||||
} else {
|
||||
{
|
||||
// just forward the simulation data to the publisher
|
||||
auto t =
|
||||
timers_event_simulator_[TimerEventSimulator::visualization]
|
||||
.timeScope();
|
||||
publishData(
|
||||
sim_data,
|
||||
{},
|
||||
camera_simulator_success,
|
||||
corrupted_camera_images_
|
||||
);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void Simulator::publishData(
|
||||
const SimulatorData& sim_data,
|
||||
const EventsVector& events,
|
||||
bool camera_simulator_success,
|
||||
const ImagePtrVector& camera_images
|
||||
) {
|
||||
if (publishers_.empty()) {
|
||||
LOG_FIRST_N(WARNING, 1) << "No publisher available";
|
||||
return;
|
||||
}
|
||||
|
||||
camera_simulator_success = camera_simulators_[i].imageCallback(*sim_data.images[i], time, corrupted_camera_images_[i]);
|
||||
}
|
||||
Time time = sim_data.timestamp;
|
||||
const Transformation& T_W_B = sim_data.groundtruth.T_W_B;
|
||||
const TransformationVector& T_W_Cs = sim_data.groundtruth.T_W_Cs;
|
||||
const ze::CameraRig::Ptr& camera_rig = sim_data.camera_rig;
|
||||
|
||||
// Publish the new data (events, images, depth maps, poses, point
|
||||
// clouds, etc.)
|
||||
if (!events.empty())
|
||||
for (const Publisher::Ptr& publisher : publishers_)
|
||||
publisher->eventsCallback(events);
|
||||
if (sim_data.poses_updated)
|
||||
for (const Publisher::Ptr& publisher : publishers_)
|
||||
publisher->poseCallback(T_W_B, T_W_Cs, time);
|
||||
if (sim_data.twists_updated)
|
||||
for (const Publisher::Ptr& publisher : publishers_)
|
||||
publisher->twistCallback(
|
||||
sim_data.groundtruth.angular_velocities_,
|
||||
sim_data.groundtruth.linear_velocities_,
|
||||
time
|
||||
);
|
||||
if (sim_data.imu_updated)
|
||||
for (const Publisher::Ptr& publisher : publishers_)
|
||||
publisher->imuCallback(
|
||||
sim_data.specific_force_corrupted,
|
||||
sim_data.angular_velocity_corrupted,
|
||||
time
|
||||
);
|
||||
|
||||
if (camera_rig)
|
||||
for (const Publisher::Ptr& publisher : publishers_)
|
||||
publisher->cameraInfoCallback(camera_rig, time);
|
||||
if (sim_data.images_updated) {
|
||||
for (const Publisher::Ptr& publisher : publishers_) {
|
||||
publisher->imageCallback(sim_data.images, time);
|
||||
|
||||
if (camera_simulator_success && time >= exposure_time_) {
|
||||
// the images should be timestamped at mid-exposure
|
||||
const Time mid_exposure_time = time - 0.5 * exposure_time_;
|
||||
publisher->imageCorruptedCallback(
|
||||
camera_images,
|
||||
mid_exposure_time
|
||||
);
|
||||
}
|
||||
}
|
||||
}
|
||||
if (sim_data.depthmaps_updated)
|
||||
for (const Publisher::Ptr& publisher : publishers_)
|
||||
publisher->depthmapCallback(sim_data.depthmaps, time);
|
||||
if (sim_data.optic_flows_updated)
|
||||
for (const Publisher::Ptr& publisher : publishers_)
|
||||
publisher->opticFlowCallback(sim_data.optic_flows, time);
|
||||
if (sim_data.depthmaps_updated && !events.empty()) {
|
||||
PointCloudVector pointclouds(num_cameras_);
|
||||
for (size_t i = 0; i < num_cameras_; ++i) {
|
||||
CHECK(sim_data.depthmaps[i]);
|
||||
pointclouds[i] = eventsToPointCloud(
|
||||
events[i],
|
||||
*sim_data.depthmaps[i],
|
||||
camera_rig->atShared(i)
|
||||
);
|
||||
}
|
||||
for (const Publisher::Ptr& publisher : publishers_)
|
||||
publisher->pointcloudCallback(pointclouds, time);
|
||||
}
|
||||
}
|
||||
|
||||
// publish the simulation data + events
|
||||
{
|
||||
auto t = timers_event_simulator_[TimerEventSimulator::visualization].timeScope();
|
||||
publishData(sim_data, events, camera_simulator_success, corrupted_camera_images_);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
{
|
||||
// just forward the simulation data to the publisher
|
||||
auto t = timers_event_simulator_[TimerEventSimulator::visualization].timeScope();
|
||||
publishData(sim_data, {}, camera_simulator_success, corrupted_camera_images_);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void Simulator::publishData(const SimulatorData& sim_data,
|
||||
const EventsVector& events,
|
||||
bool camera_simulator_success,
|
||||
const ImagePtrVector& camera_images)
|
||||
{
|
||||
if(publishers_.empty())
|
||||
{
|
||||
LOG_FIRST_N(WARNING, 1) << "No publisher available";
|
||||
return;
|
||||
}
|
||||
|
||||
Time time = sim_data.timestamp;
|
||||
const Transformation& T_W_B = sim_data.groundtruth.T_W_B;
|
||||
const TransformationVector& T_W_Cs = sim_data.groundtruth.T_W_Cs;
|
||||
const ze::CameraRig::Ptr& camera_rig = sim_data.camera_rig;
|
||||
|
||||
// Publish the new data (events, images, depth maps, poses, point clouds, etc.)
|
||||
if(!events.empty())
|
||||
{
|
||||
for(const Publisher::Ptr& publisher : publishers_)
|
||||
publisher->eventsCallback(events);
|
||||
}
|
||||
if(sim_data.poses_updated)
|
||||
{
|
||||
for(const Publisher::Ptr& publisher : publishers_)
|
||||
publisher->poseCallback(T_W_B, T_W_Cs, time);
|
||||
}
|
||||
if(sim_data.twists_updated)
|
||||
{
|
||||
for(const Publisher::Ptr& publisher : publishers_)
|
||||
publisher->twistCallback(sim_data.groundtruth.angular_velocities_,
|
||||
sim_data.groundtruth.linear_velocities_,
|
||||
time);
|
||||
}
|
||||
if(sim_data.imu_updated)
|
||||
{
|
||||
for(const Publisher::Ptr& publisher : publishers_)
|
||||
publisher->imuCallback(sim_data.specific_force_corrupted, sim_data.angular_velocity_corrupted, time);
|
||||
}
|
||||
|
||||
if(camera_rig)
|
||||
{
|
||||
for(const Publisher::Ptr& publisher : publishers_)
|
||||
publisher->cameraInfoCallback(camera_rig, time);
|
||||
}
|
||||
if(sim_data.images_updated)
|
||||
{
|
||||
for(const Publisher::Ptr& publisher : publishers_)
|
||||
{
|
||||
publisher->imageCallback(sim_data.images, time);
|
||||
|
||||
if(camera_simulator_success && time >= exposure_time_)
|
||||
{
|
||||
// the images should be timestamped at mid-exposure
|
||||
const Time mid_exposure_time = time - 0.5 * exposure_time_;
|
||||
publisher->imageCorruptedCallback(camera_images, mid_exposure_time);
|
||||
}
|
||||
}
|
||||
}
|
||||
if(sim_data.depthmaps_updated)
|
||||
{
|
||||
for(const Publisher::Ptr& publisher : publishers_)
|
||||
publisher->depthmapCallback(sim_data.depthmaps, time);
|
||||
}
|
||||
if(sim_data.optic_flows_updated)
|
||||
{
|
||||
for(const Publisher::Ptr& publisher : publishers_)
|
||||
publisher->opticFlowCallback(sim_data.optic_flows, time);
|
||||
}
|
||||
if(sim_data.depthmaps_updated && !events.empty())
|
||||
{
|
||||
PointCloudVector pointclouds(num_cameras_);
|
||||
for(size_t i=0; i<num_cameras_; ++i)
|
||||
{
|
||||
CHECK(sim_data.depthmaps[i]);
|
||||
pointclouds[i] = eventsToPointCloud(events[i], *sim_data.depthmaps[i], camera_rig->atShared(i));
|
||||
}
|
||||
for(const Publisher::Ptr& publisher : publishers_)
|
||||
publisher->pointcloudCallback(pointclouds, time);
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace event_camera_simulator
|
||||
|
@ -1,237 +1,225 @@
|
||||
#include <esim/esim/event_simulator.hpp>
|
||||
#include <ze/common/test_entrypoint.hpp>
|
||||
#include <fstream>
|
||||
#include <opencv2/highgui/highgui.hpp>
|
||||
#include <ze/common/file_utils.hpp>
|
||||
#include <ze/common/path_utils.hpp>
|
||||
#include <ze/common/string_utils.hpp>
|
||||
#include <ze/common/file_utils.hpp>
|
||||
|
||||
#include <ze/common/test_entrypoint.hpp>
|
||||
#include <ze/common/time_conversions.hpp>
|
||||
#include <ze/matplotlib/matplotlibcpp.hpp>
|
||||
#include <opencv2/highgui/highgui.hpp>
|
||||
|
||||
#define USE_OPENCV
|
||||
|
||||
namespace event_camera_simulator
|
||||
{
|
||||
namespace event_camera_simulator {
|
||||
|
||||
class CSVImageLoader
|
||||
{
|
||||
public:
|
||||
CSVImageLoader(const std::string& path_to_data_folder)
|
||||
: path_to_data_folder_(path_to_data_folder)
|
||||
{
|
||||
images_in_str_.open(ze::joinPath(path_to_data_folder, "images.csv"));
|
||||
CHECK(images_in_str_.is_open());
|
||||
}
|
||||
class CSVImageLoader {
|
||||
public:
|
||||
CSVImageLoader(const std::string& path_to_data_folder)
|
||||
: path_to_data_folder_(path_to_data_folder) {
|
||||
images_in_str_.open(ze::joinPath(path_to_data_folder, "images.csv")
|
||||
);
|
||||
CHECK(images_in_str_.is_open());
|
||||
}
|
||||
|
||||
bool next(int64_t& stamp, Image& img)
|
||||
{
|
||||
std::string line;
|
||||
if(!getline(images_in_str_, line))
|
||||
{
|
||||
LOG(INFO) << "Finished reading all the images in the folder";
|
||||
return false;
|
||||
}
|
||||
bool next(int64_t& stamp, Image& img) {
|
||||
std::string line;
|
||||
if (!getline(images_in_str_, line)) {
|
||||
LOG(INFO) << "Finished reading all the images in the folder";
|
||||
return false;
|
||||
}
|
||||
|
||||
if('%' != line.at(0) && '#' != line.at(0))
|
||||
{
|
||||
std::vector<std::string> items = ze::splitString(line, delimiter_);
|
||||
stamp = std::stoll(items[0]);
|
||||
if ('%' != line.at(0) && '#' != line.at(0)) {
|
||||
std::vector<std::string> items =
|
||||
ze::splitString(line, delimiter_);
|
||||
stamp = std::stoll(items[0]);
|
||||
|
||||
const std::string& path_to_image
|
||||
= ze::joinPath(path_to_data_folder_, "frame", "cam_0", items[1]);
|
||||
const std::string& path_to_image = ze::joinPath(
|
||||
path_to_data_folder_,
|
||||
"frame",
|
||||
"cam_0",
|
||||
items[1]
|
||||
);
|
||||
|
||||
img = cv::imread(path_to_image, 0);
|
||||
CHECK(img.data) << "Error loading image: " << path_to_image;
|
||||
img = cv::imread(path_to_image, 0);
|
||||
CHECK(img.data) << "Error loading image: " << path_to_image;
|
||||
|
||||
return true;
|
||||
}
|
||||
else
|
||||
{
|
||||
return next(stamp, img);
|
||||
}
|
||||
}
|
||||
return true;
|
||||
} else {
|
||||
return next(stamp, img);
|
||||
}
|
||||
}
|
||||
|
||||
private:
|
||||
std::ifstream images_in_str_;
|
||||
const char delimiter_{','};
|
||||
std::string path_to_data_folder_;
|
||||
};
|
||||
private:
|
||||
std::ifstream images_in_str_;
|
||||
const char delimiter_{','};
|
||||
std::string path_to_data_folder_;
|
||||
};
|
||||
|
||||
} // namespace event_camera_simulator
|
||||
|
||||
std::string getTestDataDir(const std::string& dataset_name)
|
||||
{
|
||||
using namespace ze;
|
||||
std::string getTestDataDir(const std::string& dataset_name) {
|
||||
using namespace ze;
|
||||
|
||||
const char* datapath_dir = std::getenv("ESIM_TEST_DATA_PATH");
|
||||
CHECK(datapath_dir != nullptr)
|
||||
<< "Did you download the esim_test_data repository and set "
|
||||
<< "the ESIM_TEST_DATA_PATH environment variable?";
|
||||
const char* datapath_dir = std::getenv("ESIM_TEST_DATA_PATH");
|
||||
CHECK(datapath_dir != nullptr)
|
||||
<< "Did you download the esim_test_data repository and set "
|
||||
<< "the ESIM_TEST_DATA_PATH environment variable?";
|
||||
|
||||
std::string path(datapath_dir);
|
||||
CHECK(isDir(path)) << "Folder does not exist: " << path;
|
||||
path = path + "/data/" + dataset_name;
|
||||
CHECK(isDir(path)) << "Dataset does not exist: " << path;
|
||||
return path;
|
||||
std::string path(datapath_dir);
|
||||
CHECK(isDir(path)) << "Folder does not exist: " << path;
|
||||
path = path + "/data/" + dataset_name;
|
||||
CHECK(isDir(path)) << "Dataset does not exist: " << path;
|
||||
return path;
|
||||
}
|
||||
|
||||
TEST(EventSimulator, testImageReconstruction)
|
||||
{
|
||||
using namespace event_camera_simulator;
|
||||
TEST(EventSimulator, testImageReconstruction) {
|
||||
using namespace event_camera_simulator;
|
||||
|
||||
// Load image sequence from folder
|
||||
const std::string path_to_data_folder = getTestDataDir("planar_carpet");
|
||||
CSVImageLoader reader(path_to_data_folder);
|
||||
// Load image sequence from folder
|
||||
const std::string path_to_data_folder = getTestDataDir("planar_carpet");
|
||||
CSVImageLoader reader(path_to_data_folder);
|
||||
|
||||
EventSimulator::Config event_sim_config;
|
||||
event_sim_config.Cp = 0.05;
|
||||
event_sim_config.Cm = 0.03;
|
||||
event_sim_config.sigma_Cp = 0;
|
||||
event_sim_config.sigma_Cm = 0;
|
||||
event_sim_config.use_log_image = true;
|
||||
event_sim_config.log_eps = 0.001;
|
||||
EventSimulator simulator(event_sim_config);
|
||||
EventSimulator::Config event_sim_config;
|
||||
event_sim_config.Cp = 0.05;
|
||||
event_sim_config.Cm = 0.03;
|
||||
event_sim_config.sigma_Cp = 0;
|
||||
event_sim_config.sigma_Cm = 0;
|
||||
event_sim_config.use_log_image = true;
|
||||
event_sim_config.log_eps = 0.001;
|
||||
EventSimulator simulator(event_sim_config);
|
||||
|
||||
LOG(INFO) << "Testing event camera simulator with C+ = " << event_sim_config.Cp
|
||||
<< ", C- = " << event_sim_config.Cm;
|
||||
LOG(INFO) << "Testing event camera simulator with C+ = "
|
||||
<< event_sim_config.Cp << ", C- = " << event_sim_config.Cm;
|
||||
|
||||
const ImageFloatType max_reconstruction_error
|
||||
= std::max(event_sim_config.Cp, event_sim_config.Cm);
|
||||
const ImageFloatType max_reconstruction_error =
|
||||
std::max(event_sim_config.Cp, event_sim_config.Cm);
|
||||
|
||||
bool is_first_image = true;
|
||||
Image I, L, L_reconstructed;
|
||||
int64_t stamp;
|
||||
while(reader.next(stamp, I))
|
||||
{
|
||||
I.convertTo(I, cv::DataType<ImageFloatType>::type, 1./255.);
|
||||
cv::log(event_sim_config.log_eps + I, L);
|
||||
bool is_first_image = true;
|
||||
Image I, L, L_reconstructed;
|
||||
int64_t stamp;
|
||||
while (reader.next(stamp, I)) {
|
||||
I.convertTo(I, cv::DataType<ImageFloatType>::type, 1. / 255.);
|
||||
cv::log(event_sim_config.log_eps + I, L);
|
||||
|
||||
if(is_first_image)
|
||||
{
|
||||
// Initialize reconstructed image from the ground truth image
|
||||
L_reconstructed = L.clone();
|
||||
is_first_image = false;
|
||||
}
|
||||
if (is_first_image) {
|
||||
// Initialize reconstructed image from the ground truth image
|
||||
L_reconstructed = L.clone();
|
||||
is_first_image = false;
|
||||
}
|
||||
|
||||
Events events = simulator.imageCallback(I, stamp);
|
||||
Events events = simulator.imageCallback(I, stamp);
|
||||
|
||||
// Reconstruct next image from previous one using the events in between
|
||||
for(const Event& e : events)
|
||||
{
|
||||
ImageFloatType pol = e.pol ? 1. : -1.;
|
||||
const ImageFloatType C = e.pol ? event_sim_config.Cp : event_sim_config.Cm;
|
||||
L_reconstructed(e.y,e.x) += pol * C;
|
||||
}
|
||||
// Reconstruct next image from previous one using the events in between
|
||||
for (const Event& e : events) {
|
||||
ImageFloatType pol = e.pol ? 1. : -1.;
|
||||
const ImageFloatType C =
|
||||
e.pol ? event_sim_config.Cp : event_sim_config.Cm;
|
||||
L_reconstructed(e.y, e.x) += pol * C;
|
||||
}
|
||||
|
||||
// Check that the reconstruction error is bounded by the contrast thresholds
|
||||
for(int y=0; y<I.rows; ++y)
|
||||
{
|
||||
for(int x=0; x<I.cols; ++x)
|
||||
{
|
||||
const ImageFloatType reconstruction_error = std::fabs(L_reconstructed(y,x) - L(y,x));
|
||||
VLOG_EVERY_N(2, I.rows * I.cols) << reconstruction_error;
|
||||
EXPECT_LE(reconstruction_error, max_reconstruction_error);
|
||||
}
|
||||
}
|
||||
// Check that the reconstruction error is bounded by the contrast
|
||||
// thresholds
|
||||
for (int y = 0; y < I.rows; ++y) {
|
||||
for (int x = 0; x < I.cols; ++x) {
|
||||
const ImageFloatType reconstruction_error =
|
||||
std::fabs(L_reconstructed(y, x) - L(y, x));
|
||||
VLOG_EVERY_N(2, I.rows * I.cols) << reconstruction_error;
|
||||
EXPECT_LE(reconstruction_error, max_reconstruction_error);
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef USE_OPENCV
|
||||
const ImageFloatType vmin = std::log(event_sim_config.log_eps);
|
||||
const ImageFloatType vmax = std::log(1.0 + event_sim_config.log_eps);
|
||||
cv::Mat disp = 255.0 * (L_reconstructed - vmin) / (vmax - vmin);
|
||||
disp.convertTo(disp, CV_8U);
|
||||
cv::imshow("Reconstructed", disp);
|
||||
cv::waitKey(1);
|
||||
const ImageFloatType vmin = std::log(event_sim_config.log_eps);
|
||||
const ImageFloatType vmax = std::log(1.0 + event_sim_config.log_eps);
|
||||
cv::Mat disp = 255.0 * (L_reconstructed - vmin) / (vmax - vmin);
|
||||
disp.convertTo(disp, CV_8U);
|
||||
cv::imshow("Reconstructed", disp);
|
||||
cv::waitKey(1);
|
||||
#endif
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
TEST(EventSimulator, testEvolutionReconstructionError) {
|
||||
using namespace event_camera_simulator;
|
||||
|
||||
TEST(EventSimulator, testEvolutionReconstructionError)
|
||||
{
|
||||
using namespace event_camera_simulator;
|
||||
// Load image sequence from folder
|
||||
const std::string path_to_data_folder = getTestDataDir("planar_carpet");
|
||||
CSVImageLoader reader(path_to_data_folder);
|
||||
|
||||
// Load image sequence from folder
|
||||
const std::string path_to_data_folder = getTestDataDir("planar_carpet");
|
||||
CSVImageLoader reader(path_to_data_folder);
|
||||
EventSimulator::Config event_sim_config;
|
||||
event_sim_config.Cp = 0.5;
|
||||
event_sim_config.Cm = event_sim_config.Cp;
|
||||
event_sim_config.sigma_Cp = 0;
|
||||
event_sim_config.sigma_Cm = event_sim_config.sigma_Cp;
|
||||
event_sim_config.use_log_image = true;
|
||||
event_sim_config.log_eps = 0.001;
|
||||
EventSimulator simulator(event_sim_config);
|
||||
const double contrast_bias = 0.0;
|
||||
|
||||
EventSimulator::Config event_sim_config;
|
||||
event_sim_config.Cp = 0.5;
|
||||
event_sim_config.Cm = event_sim_config.Cp;
|
||||
event_sim_config.sigma_Cp = 0;
|
||||
event_sim_config.sigma_Cm = event_sim_config.sigma_Cp;
|
||||
event_sim_config.use_log_image = true;
|
||||
event_sim_config.log_eps = 0.001;
|
||||
EventSimulator simulator(event_sim_config);
|
||||
const double contrast_bias = 0.0;
|
||||
LOG(INFO) << "Testing event camera simulator with C+ = "
|
||||
<< event_sim_config.Cp << ", C- = " << event_sim_config.Cm;
|
||||
|
||||
LOG(INFO) << "Testing event camera simulator with C+ = " << event_sim_config.Cp
|
||||
<< ", C- = " << event_sim_config.Cm;
|
||||
std::vector<ze::real_t> times, mean_errors, stddev_errors;
|
||||
bool is_first_image = true;
|
||||
Image I, L, L_reconstructed;
|
||||
int64_t stamp;
|
||||
while (reader.next(stamp, I)) {
|
||||
LOG_EVERY_N(INFO, 50) << "t = " << ze::nanosecToSecTrunc(stamp) << " s";
|
||||
I.convertTo(I, cv::DataType<ImageFloatType>::type, 1. / 255.);
|
||||
cv::log(event_sim_config.log_eps + I, L);
|
||||
|
||||
std::vector<ze::real_t> times, mean_errors, stddev_errors;
|
||||
bool is_first_image = true;
|
||||
Image I, L, L_reconstructed;
|
||||
int64_t stamp;
|
||||
while(reader.next(stamp, I))
|
||||
{
|
||||
LOG_EVERY_N(INFO, 50) << "t = " << ze::nanosecToSecTrunc(stamp) << " s";
|
||||
I.convertTo(I, cv::DataType<ImageFloatType>::type, 1./255.);
|
||||
cv::log(event_sim_config.log_eps + I, L);
|
||||
if (is_first_image) {
|
||||
// Initialize reconstructed image from the ground truth image
|
||||
L_reconstructed = L.clone();
|
||||
is_first_image = false;
|
||||
}
|
||||
|
||||
if(is_first_image)
|
||||
{
|
||||
// Initialize reconstructed image from the ground truth image
|
||||
L_reconstructed = L.clone();
|
||||
is_first_image = false;
|
||||
}
|
||||
Events events = simulator.imageCallback(I, stamp);
|
||||
|
||||
Events events = simulator.imageCallback(I, stamp);
|
||||
// Reconstruct next image from previous one using the events in between
|
||||
for (const Event& e : events) {
|
||||
ImageFloatType pol = e.pol ? 1. : -1.;
|
||||
ImageFloatType C =
|
||||
e.pol ? event_sim_config.Cp : event_sim_config.Cm;
|
||||
C += contrast_bias;
|
||||
L_reconstructed(e.y, e.x) += pol * C;
|
||||
}
|
||||
|
||||
// Reconstruct next image from previous one using the events in between
|
||||
for(const Event& e : events)
|
||||
{
|
||||
ImageFloatType pol = e.pol ? 1. : -1.;
|
||||
ImageFloatType C = e.pol ? event_sim_config.Cp : event_sim_config.Cm;
|
||||
C += contrast_bias;
|
||||
L_reconstructed(e.y,e.x) += pol * C;
|
||||
}
|
||||
// Compute the mean and average reconstruction error over the whole
|
||||
// image
|
||||
Image error;
|
||||
cv::absdiff(L, L_reconstructed, error);
|
||||
cv::Scalar mean_error, stddev_error;
|
||||
cv::meanStdDev(error, mean_error, stddev_error);
|
||||
VLOG(1) << "Mean error: " << mean_error << ", Stddev: " << stddev_error;
|
||||
|
||||
// Compute the mean and average reconstruction error over the whole image
|
||||
Image error;
|
||||
cv::absdiff(L, L_reconstructed, error);
|
||||
cv::Scalar mean_error, stddev_error;
|
||||
cv::meanStdDev(error, mean_error, stddev_error);
|
||||
VLOG(1) << "Mean error: " << mean_error
|
||||
<< ", Stddev: " << stddev_error;
|
||||
|
||||
times.push_back(ze::nanosecToSecTrunc(stamp));
|
||||
mean_errors.push_back(mean_error[0]);
|
||||
stddev_errors.push_back(stddev_error[0]);
|
||||
times.push_back(ze::nanosecToSecTrunc(stamp));
|
||||
mean_errors.push_back(mean_error[0]);
|
||||
stddev_errors.push_back(stddev_error[0]);
|
||||
|
||||
#ifdef USE_OPENCV
|
||||
const ImageFloatType vmin = std::log(event_sim_config.log_eps);
|
||||
const ImageFloatType vmax = std::log(1.0 + event_sim_config.log_eps);
|
||||
cv::Mat disp = 255.0 * (L_reconstructed - vmin) / (vmax - vmin);
|
||||
disp.convertTo(disp, CV_8U);
|
||||
cv::imshow("Reconstructed", disp);
|
||||
cv::waitKey(1);
|
||||
const ImageFloatType vmin = std::log(event_sim_config.log_eps);
|
||||
const ImageFloatType vmax = std::log(1.0 + event_sim_config.log_eps);
|
||||
cv::Mat disp = 255.0 * (L_reconstructed - vmin) / (vmax - vmin);
|
||||
disp.convertTo(disp, CV_8U);
|
||||
cv::imshow("Reconstructed", disp);
|
||||
cv::waitKey(1);
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
// Plot the mean and stddev reconstruction error over time
|
||||
ze::plt::plot(times, mean_errors, "r");
|
||||
ze::plt::plot(times, stddev_errors, "b--");
|
||||
std::stringstream title;
|
||||
title << "C = " << event_sim_config.Cp
|
||||
<< ", sigma = " << event_sim_config.sigma_Cp
|
||||
<< ", bias = " << contrast_bias;
|
||||
ze::plt::title(title.str());
|
||||
ze::plt::xlabel("Time (s)");
|
||||
ze::plt::ylabel("Mean / Stddev reconstruction error");
|
||||
ze::plt::grid(true);
|
||||
ze::plt::save("/tmp/evolution_reconstruction_error.pdf");
|
||||
ze::plt::show();
|
||||
// Plot the mean and stddev reconstruction error over time
|
||||
ze::plt::plot(times, mean_errors, "r");
|
||||
ze::plt::plot(times, stddev_errors, "b--");
|
||||
std::stringstream title;
|
||||
title << "C = " << event_sim_config.Cp
|
||||
<< ", sigma = " << event_sim_config.sigma_Cp
|
||||
<< ", bias = " << contrast_bias;
|
||||
ze::plt::title(title.str());
|
||||
ze::plt::xlabel("Time (s)");
|
||||
ze::plt::ylabel("Mean / Stddev reconstruction error");
|
||||
ze::plt::grid(true);
|
||||
ze::plt::save("/tmp/evolution_reconstruction_error.pdf");
|
||||
ze::plt::show();
|
||||
}
|
||||
|
||||
ZE_UNITTEST_ENTRYPOINT
|
||||
|
@ -1,160 +1,155 @@
|
||||
#pragma once
|
||||
|
||||
#include <ze/common/transformation.hpp>
|
||||
#include <memory>
|
||||
#include <opencv2/core/core.hpp>
|
||||
#include <ze/cameras/camera_rig.hpp>
|
||||
#include <memory>
|
||||
#include <ze/common/transformation.hpp>
|
||||
|
||||
// FloatType defines the floating point accuracy (single or double precision)
|
||||
// for the geometric operations (computing rotation matrices, point projection, etc.).
|
||||
// This should typically be double precision (highest accuracy).
|
||||
// for the geometric operations (computing rotation matrices, point projection,
|
||||
// etc.). This should typically be double precision (highest accuracy).
|
||||
#define FloatType ze::real_t
|
||||
|
||||
// ImageFloatType defines the floating point accuracy (single or double precision)
|
||||
// of the intensity images (and depth images).
|
||||
// Single precision should be enough there in most cases.
|
||||
// ImageFloatType defines the floating point accuracy (single or double
|
||||
// precision) of the intensity images (and depth images). Single precision
|
||||
// should be enough there in most cases.
|
||||
#define ImageFloatType float
|
||||
|
||||
namespace event_camera_simulator {
|
||||
|
||||
using Translation = ze::Position;
|
||||
using Vector3 = ze::Vector3;
|
||||
using Vector4 = ze::Vector4;
|
||||
using Vector3i = Eigen::Vector3i;
|
||||
using Translation = ze::Position;
|
||||
using Vector3 = ze::Vector3;
|
||||
using Vector4 = ze::Vector4;
|
||||
using Vector3i = Eigen::Vector3i;
|
||||
|
||||
using Transformation = ze::Transformation;
|
||||
using TransformationVector = ze::TransformationVector;
|
||||
using TransformationPtr = std::shared_ptr<Transformation>;
|
||||
using Transformation = ze::Transformation;
|
||||
using TransformationVector = ze::TransformationVector;
|
||||
using TransformationPtr = std::shared_ptr<Transformation>;
|
||||
|
||||
using Normal = ze::Vector3;
|
||||
using CalibrationMatrix = ze::Matrix3;
|
||||
using RotationMatrix = ze::Matrix3;
|
||||
using HomographyMatrix = ze::Matrix3;
|
||||
using Normal = ze::Vector3;
|
||||
using CalibrationMatrix = ze::Matrix3;
|
||||
using RotationMatrix = ze::Matrix3;
|
||||
using HomographyMatrix = ze::Matrix3;
|
||||
|
||||
using AngularVelocity = ze::Vector3;
|
||||
using LinearVelocity = ze::Vector3;
|
||||
using AngularVelocityVector = std::vector<AngularVelocity>;
|
||||
using LinearVelocityVector = std::vector<LinearVelocity>;
|
||||
using AngularVelocity = ze::Vector3;
|
||||
using LinearVelocity = ze::Vector3;
|
||||
using AngularVelocityVector = std::vector<AngularVelocity>;
|
||||
using LinearVelocityVector = std::vector<LinearVelocity>;
|
||||
|
||||
using uint16_t = ze::uint16_t;
|
||||
using uint16_t = ze::uint16_t;
|
||||
|
||||
using Time = ze::int64_t;
|
||||
using Duration = ze::uint64_t;
|
||||
using Image = cv::Mat_<ImageFloatType>;
|
||||
using ImagePtr = std::shared_ptr<Image>;
|
||||
using Depthmap = cv::Mat_<ImageFloatType>;
|
||||
using OpticFlow = cv::Mat_< cv::Vec<ImageFloatType, 2> >;
|
||||
using OpticFlowPtr = std::shared_ptr<OpticFlow>;
|
||||
using DepthmapPtr = std::shared_ptr<Depthmap>;
|
||||
using Time = ze::int64_t;
|
||||
using Duration = ze::uint64_t;
|
||||
using Image = cv::Mat_<ImageFloatType>;
|
||||
using ImagePtr = std::shared_ptr<Image>;
|
||||
using Depthmap = cv::Mat_<ImageFloatType>;
|
||||
using OpticFlow = cv::Mat_<cv::Vec<ImageFloatType, 2>>;
|
||||
using OpticFlowPtr = std::shared_ptr<OpticFlow>;
|
||||
using DepthmapPtr = std::shared_ptr<Depthmap>;
|
||||
|
||||
using ImagePtrVector = std::vector<ImagePtr>;
|
||||
using DepthmapPtrVector = std::vector<DepthmapPtr>;
|
||||
using OpticFlowPtrVector = std::vector<OpticFlowPtr>;
|
||||
using ImagePtrVector = std::vector<ImagePtr>;
|
||||
using DepthmapPtrVector = std::vector<DepthmapPtr>;
|
||||
using OpticFlowPtrVector = std::vector<OpticFlowPtr>;
|
||||
|
||||
using Camera = ze::Camera;
|
||||
using Camera = ze::Camera;
|
||||
|
||||
struct Event
|
||||
{
|
||||
Event(uint16_t x, uint16_t y, Time t, bool pol)
|
||||
: x(x),
|
||||
y(y),
|
||||
t(t),
|
||||
pol(pol)
|
||||
{
|
||||
struct Event {
|
||||
Event(uint16_t x, uint16_t y, Time t, bool pol)
|
||||
: x(x),
|
||||
y(y),
|
||||
t(t),
|
||||
pol(pol) {}
|
||||
|
||||
}
|
||||
uint16_t x;
|
||||
uint16_t y;
|
||||
Time t;
|
||||
bool pol;
|
||||
};
|
||||
|
||||
uint16_t x;
|
||||
uint16_t y;
|
||||
Time t;
|
||||
bool pol;
|
||||
};
|
||||
using Events = std::vector<Event>;
|
||||
using EventsVector = std::vector<Events>;
|
||||
using EventsPtr = std::shared_ptr<Events>;
|
||||
|
||||
using Events = std::vector<Event>;
|
||||
using EventsVector = std::vector<Events>;
|
||||
using EventsPtr = std::shared_ptr<Events>;
|
||||
struct PointXYZRGB {
|
||||
PointXYZRGB(
|
||||
FloatType x, FloatType y, FloatType z, int red, int green, int blue
|
||||
)
|
||||
: xyz(x, y, z),
|
||||
rgb(red, green, blue) {}
|
||||
|
||||
struct PointXYZRGB
|
||||
{
|
||||
PointXYZRGB(FloatType x, FloatType y, FloatType z,
|
||||
int red, int green, int blue)
|
||||
: xyz(x, y, z),
|
||||
rgb(red, green, blue) {}
|
||||
PointXYZRGB(const Vector3& xyz): xyz(xyz) {}
|
||||
|
||||
PointXYZRGB(const Vector3& xyz)
|
||||
: xyz(xyz) {}
|
||||
PointXYZRGB(const Vector3& xyz, const Vector3i& rgb)
|
||||
: xyz(xyz),
|
||||
rgb(rgb) {}
|
||||
|
||||
PointXYZRGB(const Vector3& xyz, const Vector3i& rgb)
|
||||
: xyz(xyz),
|
||||
rgb(rgb) {}
|
||||
Vector3 xyz;
|
||||
Vector3i rgb;
|
||||
};
|
||||
|
||||
Vector3 xyz;
|
||||
Vector3i rgb;
|
||||
};
|
||||
using PointCloud = std::vector<PointXYZRGB>;
|
||||
using PointCloudVector = std::vector<PointCloud>;
|
||||
|
||||
using PointCloud = std::vector<PointXYZRGB>;
|
||||
using PointCloudVector = std::vector<PointCloud>;
|
||||
struct SimulatorData {
|
||||
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
|
||||
|
||||
struct SimulatorData
|
||||
{
|
||||
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
|
||||
//! Nanosecond timestamp.
|
||||
Time timestamp;
|
||||
|
||||
//! Nanosecond timestamp.
|
||||
Time timestamp;
|
||||
//! Camera images.
|
||||
ImagePtrVector images;
|
||||
|
||||
//! Camera images.
|
||||
ImagePtrVector images;
|
||||
//! Depth maps.
|
||||
DepthmapPtrVector depthmaps;
|
||||
|
||||
//! Depth maps.
|
||||
DepthmapPtrVector depthmaps;
|
||||
//! Optic flow maps.
|
||||
OpticFlowPtrVector optic_flows;
|
||||
|
||||
//! Optic flow maps.
|
||||
OpticFlowPtrVector optic_flows;
|
||||
//! Camera
|
||||
ze::CameraRig::Ptr camera_rig;
|
||||
|
||||
//! Camera
|
||||
ze::CameraRig::Ptr camera_rig;
|
||||
//! An accelerometer measures the specific force (incl. gravity),
|
||||
//! corrupted by noise and bias.
|
||||
Vector3 specific_force_corrupted;
|
||||
|
||||
//! An accelerometer measures the specific force (incl. gravity),
|
||||
//! corrupted by noise and bias.
|
||||
Vector3 specific_force_corrupted;
|
||||
//! The angular velocity (in the body frame) corrupted by noise and
|
||||
//! bias.
|
||||
Vector3 angular_velocity_corrupted;
|
||||
|
||||
//! The angular velocity (in the body frame) corrupted by noise and bias.
|
||||
Vector3 angular_velocity_corrupted;
|
||||
//! Groundtruth states.
|
||||
struct Groundtruth {
|
||||
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
|
||||
|
||||
//! Groundtruth states.
|
||||
struct Groundtruth
|
||||
{
|
||||
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
|
||||
//! Pose of the body (i.e. the IMU) expressed in the world frame.
|
||||
Transformation T_W_B;
|
||||
|
||||
//! Pose of the body (i.e. the IMU) expressed in the world frame.
|
||||
Transformation T_W_B;
|
||||
//! Accelerometer and gyro bias
|
||||
Vector3 acc_bias;
|
||||
Vector3 gyr_bias;
|
||||
|
||||
//! Accelerometer and gyro bias
|
||||
Vector3 acc_bias;
|
||||
Vector3 gyr_bias;
|
||||
//! Poses of the cameras in the rig expressed in the world frame.
|
||||
TransformationVector T_W_Cs;
|
||||
|
||||
//! Poses of the cameras in the rig expressed in the world frame.
|
||||
TransformationVector T_W_Cs;
|
||||
//! Linear and angular velocities (i.e. twists) of the cameras in
|
||||
//! the rig, expressed in each camera's local coordinate frame.
|
||||
LinearVelocityVector linear_velocities_;
|
||||
AngularVelocityVector angular_velocities_;
|
||||
|
||||
//! Linear and angular velocities (i.e. twists) of the cameras in the rig,
|
||||
//! expressed in each camera's local coordinate frame.
|
||||
LinearVelocityVector linear_velocities_;
|
||||
AngularVelocityVector angular_velocities_;
|
||||
// dynamic objects
|
||||
std::vector<Transformation> T_W_OBJ_;
|
||||
std::vector<LinearVelocity> linear_velocity_obj_;
|
||||
std::vector<AngularVelocity> angular_velocity_obj_;
|
||||
};
|
||||
|
||||
// dynamic objects
|
||||
std::vector<Transformation> T_W_OBJ_;
|
||||
std::vector<LinearVelocity> linear_velocity_obj_;
|
||||
std::vector<AngularVelocity> angular_velocity_obj_;
|
||||
};
|
||||
Groundtruth groundtruth;
|
||||
Groundtruth groundtruth;
|
||||
|
||||
// Flags to indicate whether a value has been updated or not
|
||||
bool images_updated;
|
||||
bool depthmaps_updated;
|
||||
bool optic_flows_updated;
|
||||
bool twists_updated;
|
||||
bool poses_updated;
|
||||
bool imu_updated;
|
||||
};
|
||||
// Flags to indicate whether a value has been updated or not
|
||||
bool images_updated;
|
||||
bool depthmaps_updated;
|
||||
bool optic_flows_updated;
|
||||
bool twists_updated;
|
||||
bool poses_updated;
|
||||
bool imu_updated;
|
||||
};
|
||||
|
||||
} // namespace event_camera_simulator
|
||||
|
@ -3,57 +3,70 @@
|
||||
#include <esim/common/types.hpp>
|
||||
|
||||
namespace ze {
|
||||
class Camera;
|
||||
class Camera;
|
||||
}
|
||||
|
||||
namespace event_camera_simulator {
|
||||
|
||||
inline double degToRad(double deg)
|
||||
{
|
||||
return deg * CV_PI / 180.0;
|
||||
}
|
||||
inline double degToRad(double deg) {
|
||||
return deg * CV_PI / 180.0;
|
||||
}
|
||||
|
||||
inline double hfovToFocalLength(double hfov_deg, int W)
|
||||
{
|
||||
return 0.5 * static_cast<double>(W) / std::tan(0.5 * degToRad(hfov_deg));
|
||||
}
|
||||
inline double hfovToFocalLength(double hfov_deg, int W) {
|
||||
return 0.5 * static_cast<double>(W)
|
||||
/ std::tan(0.5 * degToRad(hfov_deg));
|
||||
}
|
||||
|
||||
CalibrationMatrix calibrationMatrixFromCamera(const Camera::Ptr& camera);
|
||||
CalibrationMatrix calibrationMatrixFromCamera(const Camera::Ptr& camera);
|
||||
|
||||
PointCloud eventsToPointCloud(const Events& events, const Depthmap& depthmap, const ze::Camera::Ptr& camera);
|
||||
PointCloud eventsToPointCloud(
|
||||
const Events& events,
|
||||
const Depthmap& depthmap,
|
||||
const ze::Camera::Ptr& camera
|
||||
);
|
||||
|
||||
FloatType maxMagnitudeOpticFlow(const OpticFlowPtr& flow);
|
||||
FloatType maxMagnitudeOpticFlow(const OpticFlowPtr& flow);
|
||||
|
||||
FloatType maxPredictedAbsBrightnessChange(const ImagePtr& I, const OpticFlowPtr& flow);
|
||||
FloatType maxPredictedAbsBrightnessChange(
|
||||
const ImagePtr& I, const OpticFlowPtr& flow
|
||||
);
|
||||
|
||||
void gaussianBlur(ImagePtr& I, FloatType sigma);
|
||||
void gaussianBlur(ImagePtr& I, FloatType sigma);
|
||||
|
||||
// Helper class to compute optic flow from a twist vector and depth map
|
||||
// Precomputes a lookup table for pixel -> bearing vector correspondences
|
||||
// to accelerate the computation
|
||||
class OpticFlowHelper
|
||||
{
|
||||
public:
|
||||
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
|
||||
// Helper class to compute optic flow from a twist vector and depth map
|
||||
// Precomputes a lookup table for pixel -> bearing vector correspondences
|
||||
// to accelerate the computation
|
||||
class OpticFlowHelper {
|
||||
public:
|
||||
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
|
||||
|
||||
ZE_POINTER_TYPEDEFS(OpticFlowHelper);
|
||||
ZE_POINTER_TYPEDEFS(OpticFlowHelper);
|
||||
|
||||
OpticFlowHelper(const ze::Camera::Ptr& camera);
|
||||
OpticFlowHelper(const ze::Camera::Ptr& camera);
|
||||
|
||||
void computeFromDepthAndTwist(const ze::Vector3& w_WC, const ze::Vector3& v_WC,
|
||||
const DepthmapPtr& depthmap, OpticFlowPtr& flow);
|
||||
void computeFromDepthAndTwist(
|
||||
const ze::Vector3& w_WC,
|
||||
const ze::Vector3& v_WC,
|
||||
const DepthmapPtr& depthmap,
|
||||
OpticFlowPtr& flow
|
||||
);
|
||||
|
||||
void computeFromDepthCamTwistAndObjDepthAndTwist(const ze::Vector3& w_WC, const ze::Vector3& v_WC, const DepthmapPtr& depthmap,
|
||||
const ze::Vector3& r_COBJ, const ze::Vector3& w_WOBJ, const ze::Vector3& v_WOBJ,
|
||||
OpticFlowPtr& flow);
|
||||
void computeFromDepthCamTwistAndObjDepthAndTwist(
|
||||
const ze::Vector3& w_WC,
|
||||
const ze::Vector3& v_WC,
|
||||
const DepthmapPtr& depthmap,
|
||||
const ze::Vector3& r_COBJ,
|
||||
const ze::Vector3& w_WOBJ,
|
||||
const ze::Vector3& v_WOBJ,
|
||||
OpticFlowPtr& flow
|
||||
);
|
||||
|
||||
private:
|
||||
private:
|
||||
void precomputePixelToBearingLookupTable();
|
||||
|
||||
void precomputePixelToBearingLookupTable();
|
||||
ze::Camera::Ptr camera_;
|
||||
|
||||
ze::Camera::Ptr camera_;
|
||||
|
||||
// Precomputed lookup table from keypoint -> bearing vector
|
||||
ze::Bearings bearings_C_;
|
||||
};
|
||||
// Precomputed lookup table from keypoint -> bearing vector
|
||||
ze::Bearings bearings_C_;
|
||||
};
|
||||
} // namespace event_camera_simulator
|
||||
|
@ -1,190 +1,212 @@
|
||||
#include <esim/common/utils.hpp>
|
||||
#include <ze/cameras/camera_models.hpp>
|
||||
#include <opencv2/imgproc/imgproc.hpp>
|
||||
#include <ze/cameras/camera_models.hpp>
|
||||
|
||||
namespace event_camera_simulator {
|
||||
|
||||
OpticFlowHelper::OpticFlowHelper(const ze::Camera::Ptr& camera)
|
||||
: camera_(camera)
|
||||
{
|
||||
CHECK(camera_);
|
||||
precomputePixelToBearingLookupTable();
|
||||
}
|
||||
|
||||
void OpticFlowHelper::precomputePixelToBearingLookupTable()
|
||||
{
|
||||
// points_C is a matrix containing the coordinates of each pixel coordinate in the image plane
|
||||
ze::Keypoints points_C(2, camera_->width() * camera_->height());
|
||||
for(int y=0; y<camera_->height(); ++y)
|
||||
{
|
||||
for(int x=0; x<camera_->width(); ++x)
|
||||
{
|
||||
points_C.col(x + camera_->width() * y) = ze::Keypoint(x,y);
|
||||
OpticFlowHelper::OpticFlowHelper(const ze::Camera::Ptr& camera)
|
||||
: camera_(camera) {
|
||||
CHECK(camera_);
|
||||
precomputePixelToBearingLookupTable();
|
||||
}
|
||||
}
|
||||
bearings_C_ = camera_->backProjectVectorized(points_C);
|
||||
bearings_C_.array().rowwise() /= bearings_C_.row(2).array();
|
||||
}
|
||||
|
||||
void OpticFlowHelper::computeFromDepthAndTwist(const ze::Vector3& w_WC, const ze::Vector3& v_WC,
|
||||
const DepthmapPtr& depthmap, OpticFlowPtr& flow)
|
||||
{
|
||||
CHECK(depthmap);
|
||||
CHECK_EQ(depthmap->rows, camera_->height());
|
||||
CHECK_EQ(depthmap->cols, camera_->width());
|
||||
CHECK(depthmap->isContinuous());
|
||||
|
||||
const ze::Vector3 w_CW = -w_WC; // rotation speed of the world wrt the camera
|
||||
const ze::Vector3 v_CW = -v_WC; // speed of the world wrt the camera
|
||||
const ze::Matrix33 R_CW = ze::skewSymmetric(w_CW);
|
||||
|
||||
Eigen::Map<const Eigen::Matrix<ImageFloatType, 1, Eigen::Dynamic, Eigen::RowMajor>> depths(depthmap->ptr<ImageFloatType>(), 1, depthmap->rows * depthmap->cols);
|
||||
ze::Positions Xs = bearings_C_;
|
||||
Xs.array().rowwise() *= depths.cast<FloatType>().array();
|
||||
|
||||
ze::Matrix6X dproject_dX =
|
||||
camera_->dProject_dLandmarkVectorized(Xs);
|
||||
|
||||
for(int y=0; y<camera_->height(); ++y)
|
||||
{
|
||||
for(int x=0; x<camera_->width(); ++x)
|
||||
{
|
||||
const Vector3 X = Xs.col(x + camera_->width() * y);
|
||||
ze::Matrix31 dXdt = R_CW * X + v_CW;
|
||||
ze::Vector2 flow_vec
|
||||
= Eigen::Map<ze::Matrix23>(dproject_dX.col(x + camera_->width() * y).data()) * dXdt;
|
||||
|
||||
(*flow)(y,x) = cv::Vec<FloatType, 2>(flow_vec(0), flow_vec(1));
|
||||
void OpticFlowHelper::precomputePixelToBearingLookupTable() {
|
||||
// points_C is a matrix containing the coordinates of each pixel
|
||||
// coordinate in the image plane
|
||||
ze::Keypoints points_C(2, camera_->width() * camera_->height());
|
||||
for (int y = 0; y < camera_->height(); ++y)
|
||||
for (int x = 0; x < camera_->width(); ++x)
|
||||
points_C.col(x + camera_->width() * y) = ze::Keypoint(x, y);
|
||||
bearings_C_ = camera_->backProjectVectorized(points_C);
|
||||
bearings_C_.array().rowwise() /= bearings_C_.row(2).array();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void OpticFlowHelper::computeFromDepthCamTwistAndObjDepthAndTwist(const ze::Vector3& w_WC, const ze::Vector3& v_WC, const DepthmapPtr& depthmap,
|
||||
const ze::Vector3& r_COBJ, const ze::Vector3& w_WOBJ, const ze::Vector3& v_WOBJ, OpticFlowPtr& flow)
|
||||
{
|
||||
CHECK(depthmap);
|
||||
CHECK_EQ(depthmap->rows, camera_->height());
|
||||
CHECK_EQ(depthmap->cols, camera_->width());
|
||||
CHECK(depthmap->isContinuous());
|
||||
void OpticFlowHelper::computeFromDepthAndTwist(
|
||||
const ze::Vector3& w_WC,
|
||||
const ze::Vector3& v_WC,
|
||||
const DepthmapPtr& depthmap,
|
||||
OpticFlowPtr& flow
|
||||
) {
|
||||
CHECK(depthmap);
|
||||
CHECK_EQ(depthmap->rows, camera_->height());
|
||||
CHECK_EQ(depthmap->cols, camera_->width());
|
||||
CHECK(depthmap->isContinuous());
|
||||
|
||||
const ze::Matrix33 w_WC_tilde = ze::skewSymmetric(w_WC);
|
||||
const ze::Matrix33 w_WOBJ_tilde = ze::skewSymmetric(w_WOBJ);
|
||||
const ze::Vector3 w_CW =
|
||||
-w_WC; // rotation speed of the world wrt the camera
|
||||
const ze::Vector3 v_CW = -v_WC; // speed of the world wrt the camera
|
||||
const ze::Matrix33 R_CW = ze::skewSymmetric(w_CW);
|
||||
|
||||
Eigen::Map<const Eigen::Matrix<ImageFloatType, 1, Eigen::Dynamic, Eigen::RowMajor>> depths(depthmap->ptr<ImageFloatType>(), 1, depthmap->rows * depthmap->cols);
|
||||
ze::Positions Xs = bearings_C_;
|
||||
Xs.array().rowwise() *= depths.cast<FloatType>().array();
|
||||
Eigen::Map<
|
||||
const Eigen::
|
||||
Matrix<ImageFloatType, 1, Eigen::Dynamic, Eigen::RowMajor>>
|
||||
depths(
|
||||
depthmap->ptr<ImageFloatType>(),
|
||||
1,
|
||||
depthmap->rows * depthmap->cols
|
||||
);
|
||||
ze::Positions Xs = bearings_C_;
|
||||
Xs.array().rowwise() *= depths.cast<FloatType>().array();
|
||||
|
||||
ze::Matrix6X dproject_dX =
|
||||
camera_->dProject_dLandmarkVectorized(Xs);
|
||||
ze::Matrix6X dproject_dX = camera_->dProject_dLandmarkVectorized(Xs);
|
||||
|
||||
for(int y=0; y<camera_->height(); ++y)
|
||||
{
|
||||
for(int x=0; x<camera_->width(); ++x)
|
||||
{
|
||||
const Vector3 r_CX = Xs.col(x + camera_->width() * y);
|
||||
const Vector3 r_OBJX = r_CX - r_COBJ;
|
||||
for (int y = 0; y < camera_->height(); ++y) {
|
||||
for (int x = 0; x < camera_->width(); ++x) {
|
||||
const Vector3 X = Xs.col(x + camera_->width() * y);
|
||||
ze::Matrix31 dXdt = R_CW * X + v_CW;
|
||||
ze::Vector2 flow_vec =
|
||||
Eigen::Map<ze::Matrix23>(
|
||||
dproject_dX.col(x + camera_->width() * y).data()
|
||||
)
|
||||
* dXdt;
|
||||
|
||||
ze::Matrix31 dXdt = v_WOBJ - v_WC - w_WC_tilde*r_CX + w_WOBJ_tilde*r_OBJX;
|
||||
ze::Vector2 flow_vec
|
||||
= Eigen::Map<ze::Matrix23>(dproject_dX.col(x + camera_->width() * y).data()) * dXdt;
|
||||
|
||||
(*flow)(y,x) = cv::Vec<FloatType, 2>(flow_vec(0), flow_vec(1));
|
||||
(*flow)(y, x) = cv::Vec<FloatType, 2>(flow_vec(0), flow_vec(1));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
FloatType maxMagnitudeOpticFlow(const OpticFlowPtr& flow)
|
||||
{
|
||||
CHECK(flow);
|
||||
FloatType max_squared_magnitude = 0;
|
||||
for(int y=0; y<flow->rows; ++y)
|
||||
{
|
||||
for(int x=0; x<flow->cols; ++x)
|
||||
{
|
||||
const FloatType squared_magnitude = cv::norm((*flow)(y,x), cv::NORM_L2SQR);
|
||||
if(squared_magnitude > max_squared_magnitude)
|
||||
{
|
||||
max_squared_magnitude = squared_magnitude;
|
||||
}
|
||||
void OpticFlowHelper::computeFromDepthCamTwistAndObjDepthAndTwist(
|
||||
const ze::Vector3& w_WC,
|
||||
const ze::Vector3& v_WC,
|
||||
const DepthmapPtr& depthmap,
|
||||
const ze::Vector3& r_COBJ,
|
||||
const ze::Vector3& w_WOBJ,
|
||||
const ze::Vector3& v_WOBJ,
|
||||
OpticFlowPtr& flow
|
||||
) {
|
||||
CHECK(depthmap);
|
||||
CHECK_EQ(depthmap->rows, camera_->height());
|
||||
CHECK_EQ(depthmap->cols, camera_->width());
|
||||
CHECK(depthmap->isContinuous());
|
||||
|
||||
const ze::Matrix33 w_WC_tilde = ze::skewSymmetric(w_WC);
|
||||
const ze::Matrix33 w_WOBJ_tilde = ze::skewSymmetric(w_WOBJ);
|
||||
|
||||
Eigen::Map<
|
||||
const Eigen::
|
||||
Matrix<ImageFloatType, 1, Eigen::Dynamic, Eigen::RowMajor>>
|
||||
depths(
|
||||
depthmap->ptr<ImageFloatType>(),
|
||||
1,
|
||||
depthmap->rows * depthmap->cols
|
||||
);
|
||||
ze::Positions Xs = bearings_C_;
|
||||
Xs.array().rowwise() *= depths.cast<FloatType>().array();
|
||||
|
||||
ze::Matrix6X dproject_dX = camera_->dProject_dLandmarkVectorized(Xs);
|
||||
|
||||
for (int y = 0; y < camera_->height(); ++y) {
|
||||
for (int x = 0; x < camera_->width(); ++x) {
|
||||
const Vector3 r_CX = Xs.col(x + camera_->width() * y);
|
||||
const Vector3 r_OBJX = r_CX - r_COBJ;
|
||||
|
||||
ze::Matrix31 dXdt =
|
||||
v_WOBJ - v_WC - w_WC_tilde * r_CX + w_WOBJ_tilde * r_OBJX;
|
||||
ze::Vector2 flow_vec =
|
||||
Eigen::Map<ze::Matrix23>(
|
||||
dproject_dX.col(x + camera_->width() * y).data()
|
||||
)
|
||||
* dXdt;
|
||||
|
||||
(*flow)(y, x) = cv::Vec<FloatType, 2>(flow_vec(0), flow_vec(1));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
return std::sqrt(max_squared_magnitude);
|
||||
}
|
||||
|
||||
FloatType maxPredictedAbsBrightnessChange(const ImagePtr& I, const OpticFlowPtr& flow)
|
||||
{
|
||||
const size_t height = I->rows;
|
||||
const size_t width = I->cols;
|
||||
|
||||
Image Ix, Iy; // horizontal/vertical gradients of I
|
||||
// the factor 1/8 accounts for the scaling introduced by the Sobel filter mask
|
||||
//cv::Sobel(*I, Ix, cv::DataType<ImageFloatType>::type, 1, 0, 3, 1./8.);
|
||||
//cv::Sobel(*I, Iy, cv::DataType<ImageFloatType>::type, 0, 1, 3, 1./8.);
|
||||
|
||||
// the factor 1/32 accounts for the scaling introduced by the Scharr filter mask
|
||||
cv::Scharr(*I, Ix, cv::DataType<ImageFloatType>::type, 1, 0, 1./32.);
|
||||
cv::Scharr(*I, Iy, cv::DataType<ImageFloatType>::type, 0, 1, 1./32.);
|
||||
|
||||
Image Lx, Ly; // horizontal/vertical gradients of log(I). d(logI)/dx = 1/I * dI/dx
|
||||
static const ImageFloatType eps = 1e-3; // small additive term to avoid problems at I=0
|
||||
cv::divide(Ix, *I+eps, Lx);
|
||||
cv::divide(Iy, *I+eps, Ly);
|
||||
|
||||
Image dLdt(height, width);
|
||||
for(int y=0; y<height; ++y)
|
||||
{
|
||||
for(int x=0; x<width; ++x)
|
||||
{
|
||||
// dL/dt ~= - <nablaL, flow>
|
||||
const ImageFloatType dLdt_at_xy =
|
||||
Lx(y,x) * (*flow)(y,x)[0] +
|
||||
Ly(y,x) * (*flow)(y,x)[1]; // "-" sign ignored since we are interested in the absolute value...
|
||||
dLdt(y,x) = std::fabs(dLdt_at_xy);
|
||||
FloatType maxMagnitudeOpticFlow(const OpticFlowPtr& flow) {
|
||||
CHECK(flow);
|
||||
FloatType max_squared_magnitude = 0;
|
||||
for (int y = 0; y < flow->rows; ++y) {
|
||||
for (int x = 0; x < flow->cols; ++x) {
|
||||
const FloatType squared_magnitude =
|
||||
cv::norm((*flow)(y, x), cv::NORM_L2SQR);
|
||||
if (squared_magnitude > max_squared_magnitude)
|
||||
max_squared_magnitude = squared_magnitude;
|
||||
}
|
||||
}
|
||||
return std::sqrt(max_squared_magnitude);
|
||||
}
|
||||
}
|
||||
double min_dLdt, max_dLdt;
|
||||
int min_idx, max_idx;
|
||||
cv::minMaxIdx(dLdt, &min_dLdt, &max_dLdt,
|
||||
&min_idx, &max_idx);
|
||||
|
||||
return static_cast<FloatType>(max_dLdt);
|
||||
}
|
||||
FloatType maxPredictedAbsBrightnessChange(
|
||||
const ImagePtr& I, const OpticFlowPtr& flow
|
||||
) {
|
||||
const size_t height = I->rows;
|
||||
const size_t width = I->cols;
|
||||
|
||||
void gaussianBlur(ImagePtr& I, FloatType sigma)
|
||||
{
|
||||
cv::GaussianBlur(*I, *I, cv::Size(15,15), sigma, sigma);
|
||||
}
|
||||
Image Ix, Iy; // horizontal/vertical gradients of I
|
||||
// the factor 1/8 accounts for the scaling introduced by the Sobel
|
||||
// filter mask cv::Sobel(*I, Ix, cv::DataType<ImageFloatType>::type, 1,
|
||||
// 0, 3, 1./8.); cv::Sobel(*I, Iy, cv::DataType<ImageFloatType>::type,
|
||||
// 0, 1, 3, 1./8.);
|
||||
|
||||
CalibrationMatrix calibrationMatrixFromCamera(const Camera::Ptr& camera)
|
||||
{
|
||||
CHECK(camera);
|
||||
const ze::VectorX params = camera->projectionParameters();
|
||||
CalibrationMatrix K;
|
||||
K << params(0), 0, params(2),
|
||||
0, params(1), params(3),
|
||||
0, 0, 1;
|
||||
return K;
|
||||
}
|
||||
// the factor 1/32 accounts for the scaling introduced by the Scharr
|
||||
// filter mask
|
||||
cv::Scharr(*I, Ix, cv::DataType<ImageFloatType>::type, 1, 0, 1. / 32.);
|
||||
cv::Scharr(*I, Iy, cv::DataType<ImageFloatType>::type, 0, 1, 1. / 32.);
|
||||
|
||||
PointCloud eventsToPointCloud(const Events& events, const Depthmap& depthmap, const ze::Camera::Ptr& camera)
|
||||
{
|
||||
PointCloud pcl_camera;
|
||||
for(const Event& ev : events)
|
||||
{
|
||||
Vector3 X_c = camera->backProject(ze::Keypoint(ev.x,ev.y));
|
||||
X_c[0] /= X_c[2];
|
||||
X_c[1] /= X_c[2];
|
||||
X_c[2] = 1.;
|
||||
const ImageFloatType z = depthmap(ev.y,ev.x);
|
||||
Vector3 P_c = z * X_c;
|
||||
Vector3i rgb;
|
||||
static const Vector3i red(255, 0, 0);
|
||||
static const Vector3i blue(0, 0, 255);
|
||||
rgb = (ev.pol) ? blue : red;
|
||||
PointXYZRGB P_c_intensity(P_c, rgb);
|
||||
pcl_camera.push_back(P_c_intensity);
|
||||
}
|
||||
return pcl_camera;
|
||||
}
|
||||
Image Lx,
|
||||
Ly; // horizontal/vertical gradients of log(I). d(logI)/dx = 1/I *
|
||||
// dI/dx
|
||||
static const ImageFloatType eps =
|
||||
1e-3; // small additive term to avoid problems at I=0
|
||||
cv::divide(Ix, *I + eps, Lx);
|
||||
cv::divide(Iy, *I + eps, Ly);
|
||||
|
||||
Image dLdt(height, width);
|
||||
for (int y = 0; y < height; ++y) {
|
||||
for (int x = 0; x < width; ++x) {
|
||||
// dL/dt ~= - <nablaL, flow>
|
||||
const ImageFloatType dLdt_at_xy =
|
||||
Lx(y, x) * (*flow)(y, x)[0]
|
||||
+ Ly(y, x)
|
||||
* (*flow)(
|
||||
y,
|
||||
x
|
||||
)[1]; // "-" sign ignored since we are
|
||||
// interested in the absolute value...
|
||||
dLdt(y, x) = std::fabs(dLdt_at_xy);
|
||||
}
|
||||
}
|
||||
double min_dLdt, max_dLdt;
|
||||
int min_idx, max_idx;
|
||||
cv::minMaxIdx(dLdt, &min_dLdt, &max_dLdt, &min_idx, &max_idx);
|
||||
|
||||
return static_cast<FloatType>(max_dLdt);
|
||||
}
|
||||
|
||||
void gaussianBlur(ImagePtr& I, FloatType sigma) {
|
||||
cv::GaussianBlur(*I, *I, cv::Size(15, 15), sigma, sigma);
|
||||
}
|
||||
|
||||
CalibrationMatrix calibrationMatrixFromCamera(const Camera::Ptr& camera) {
|
||||
CHECK(camera);
|
||||
const ze::VectorX params = camera->projectionParameters();
|
||||
CalibrationMatrix K;
|
||||
K << params(0), 0, params(2), 0, params(1), params(3), 0, 0, 1;
|
||||
return K;
|
||||
}
|
||||
|
||||
PointCloud eventsToPointCloud(
|
||||
const Events& events,
|
||||
const Depthmap& depthmap,
|
||||
const ze::Camera::Ptr& camera
|
||||
) {
|
||||
PointCloud pcl_camera;
|
||||
for (const Event& ev : events) {
|
||||
Vector3 X_c = camera->backProject(ze::Keypoint(ev.x, ev.y));
|
||||
X_c[0] /= X_c[2];
|
||||
X_c[1] /= X_c[2];
|
||||
X_c[2] = 1.;
|
||||
const ImageFloatType z = depthmap(ev.y, ev.x);
|
||||
Vector3 P_c = z * X_c;
|
||||
Vector3i rgb;
|
||||
static const Vector3i red(255, 0, 0);
|
||||
static const Vector3i blue(0, 0, 255);
|
||||
rgb = (ev.pol) ? blue : red;
|
||||
PointXYZRGB P_c_intensity(P_c, rgb);
|
||||
pcl_camera.push_back(P_c_intensity);
|
||||
}
|
||||
return pcl_camera;
|
||||
}
|
||||
|
||||
} // namespace event_camera_simulator
|
||||
|
@ -1,213 +1,252 @@
|
||||
#include <esim/common/utils.hpp>
|
||||
#include <ze/common/test_entrypoint.hpp>
|
||||
#include <ze/cameras/camera_rig.hpp>
|
||||
#include <ze/common/file_utils.hpp>
|
||||
#include <ze/common/path_utils.hpp>
|
||||
#include <ze/common/string_utils.hpp>
|
||||
#include <ze/cameras/camera_rig.hpp>
|
||||
#include <ze/common/random.hpp>
|
||||
#include <ze/common/string_utils.hpp>
|
||||
#include <ze/common/test_entrypoint.hpp>
|
||||
|
||||
std::string getTestDataDir(const std::string& dataset_name)
|
||||
{
|
||||
using namespace ze;
|
||||
std::string getTestDataDir(const std::string& dataset_name) {
|
||||
using namespace ze;
|
||||
|
||||
const char* datapath_dir = std::getenv("ESIM_TEST_DATA_PATH");
|
||||
CHECK(datapath_dir != nullptr)
|
||||
<< "Did you download the esim_test_data repository and set "
|
||||
<< "the ESIM_TEST_DATA_PATH environment variable?";
|
||||
const char* datapath_dir = std::getenv("ESIM_TEST_DATA_PATH");
|
||||
CHECK(datapath_dir != nullptr)
|
||||
<< "Did you download the esim_test_data repository and set "
|
||||
<< "the ESIM_TEST_DATA_PATH environment variable?";
|
||||
|
||||
std::string path(datapath_dir);
|
||||
CHECK(isDir(path)) << "Folder does not exist: " << path;
|
||||
path = path + "/data/" + dataset_name;
|
||||
CHECK(isDir(path)) << "Dataset does not exist: " << path;
|
||||
return path;
|
||||
std::string path(datapath_dir);
|
||||
CHECK(isDir(path)) << "Folder does not exist: " << path;
|
||||
path = path + "/data/" + dataset_name;
|
||||
CHECK(isDir(path)) << "Dataset does not exist: " << path;
|
||||
return path;
|
||||
}
|
||||
|
||||
namespace event_camera_simulator {
|
||||
|
||||
void computeOpticFlowFiniteDifference(const ze::Camera::Ptr& camera,
|
||||
const ze::Vector3& angular_velocity,
|
||||
const ze::Vector3& linear_velocity,
|
||||
const DepthmapPtr& depth,
|
||||
OpticFlowPtr& flow)
|
||||
{
|
||||
CHECK(flow);
|
||||
CHECK_EQ(flow->rows, camera->height());
|
||||
CHECK_EQ(flow->cols, camera->width());
|
||||
void computeOpticFlowFiniteDifference(
|
||||
const ze::Camera::Ptr& camera,
|
||||
const ze::Vector3& angular_velocity,
|
||||
const ze::Vector3& linear_velocity,
|
||||
const DepthmapPtr& depth,
|
||||
OpticFlowPtr& flow
|
||||
) {
|
||||
CHECK(flow);
|
||||
CHECK_EQ(flow->rows, camera->height());
|
||||
CHECK_EQ(flow->cols, camera->width());
|
||||
|
||||
const FloatType dt = 0.001;
|
||||
const FloatType dt = 0.001;
|
||||
|
||||
for(int y=0; y<flow->rows; ++y)
|
||||
{
|
||||
for(int x=0; x<flow->cols; ++x)
|
||||
{
|
||||
ze::Keypoint u_t(x,y);
|
||||
ze::Bearing f = camera->backProject(u_t);
|
||||
const FloatType z = static_cast<FloatType>((*depth)(y,x));
|
||||
ze::Position Xc_t = z * ze::Position(f[0]/f[2], f[1]/f[2], 1.);
|
||||
for (int y = 0; y < flow->rows; ++y) {
|
||||
for (int x = 0; x < flow->cols; ++x) {
|
||||
ze::Keypoint u_t(x, y);
|
||||
ze::Bearing f = camera->backProject(u_t);
|
||||
const FloatType z = static_cast<FloatType>((*depth)(y, x));
|
||||
ze::Position Xc_t =
|
||||
z * ze::Position(f[0] / f[2], f[1] / f[2], 1.);
|
||||
|
||||
ze::Transformation::Rotation dR = ze::Transformation::Rotation::exp(-angular_velocity * dt);
|
||||
ze::Transformation::Position dT = -linear_velocity * dt;
|
||||
ze::Transformation::Rotation dR =
|
||||
ze::Transformation::Rotation::exp(-angular_velocity * dt);
|
||||
ze::Transformation::Position dT = -linear_velocity * dt;
|
||||
|
||||
// Transform Xc(t) to Xc(t+dt)
|
||||
ze::Transformation T_tdt_t;
|
||||
T_tdt_t.getRotation() = dR;
|
||||
T_tdt_t.getPosition() = dT;
|
||||
VLOG(5) << T_tdt_t;
|
||||
// Transform Xc(t) to Xc(t+dt)
|
||||
ze::Transformation T_tdt_t;
|
||||
T_tdt_t.getRotation() = dR;
|
||||
T_tdt_t.getPosition() = dT;
|
||||
VLOG(5) << T_tdt_t;
|
||||
|
||||
ze::Position Xc_t_dt = T_tdt_t.transform(Xc_t);
|
||||
ze::Position Xc_t_dt = T_tdt_t.transform(Xc_t);
|
||||
|
||||
// Project Xc(t+dt) in the image plane
|
||||
ze::Keypoint u_t_dt = camera->project(Xc_t_dt);
|
||||
VLOG(5) << u_t;
|
||||
VLOG(5) << u_t_dt;
|
||||
// Project Xc(t+dt) in the image plane
|
||||
ze::Keypoint u_t_dt = camera->project(Xc_t_dt);
|
||||
VLOG(5) << u_t;
|
||||
VLOG(5) << u_t_dt;
|
||||
|
||||
ze::Vector2 flow_vec = (u_t_dt - u_t) / dt;
|
||||
(*flow)(y,x) = cv::Vec<FloatType, 2>(flow_vec(0), flow_vec(1));
|
||||
ze::Vector2 flow_vec = (u_t_dt - u_t) / dt;
|
||||
(*flow)(y, x) = cv::Vec<FloatType, 2>(flow_vec(0), flow_vec(1));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void computeOpticFlowFiniteDifference(const ze::Camera::Ptr& camera,
|
||||
const ze::Vector3& angular_velocity,
|
||||
const ze::Vector3& linear_velocity,
|
||||
const DepthmapPtr& depth,
|
||||
const ze::Vector3& r_COBJ,
|
||||
const ze::Vector3& angular_velocity_obj,
|
||||
const ze::Vector3& linear_velocity_obj,
|
||||
OpticFlowPtr& flow)
|
||||
{
|
||||
CHECK(flow);
|
||||
CHECK_EQ(flow->rows, camera->height());
|
||||
CHECK_EQ(flow->cols, camera->width());
|
||||
void computeOpticFlowFiniteDifference(
|
||||
const ze::Camera::Ptr& camera,
|
||||
const ze::Vector3& angular_velocity,
|
||||
const ze::Vector3& linear_velocity,
|
||||
const DepthmapPtr& depth,
|
||||
const ze::Vector3& r_COBJ,
|
||||
const ze::Vector3& angular_velocity_obj,
|
||||
const ze::Vector3& linear_velocity_obj,
|
||||
OpticFlowPtr& flow
|
||||
) {
|
||||
CHECK(flow);
|
||||
CHECK_EQ(flow->rows, camera->height());
|
||||
CHECK_EQ(flow->cols, camera->width());
|
||||
|
||||
const FloatType dt = 0.001;
|
||||
const FloatType dt = 0.001;
|
||||
|
||||
for(int y=0; y<flow->rows; ++y)
|
||||
{
|
||||
for(int x=0; x<flow->cols; ++x)
|
||||
{
|
||||
ze::Keypoint u_t(x,y);
|
||||
ze::Bearing f = camera->backProject(u_t);
|
||||
const FloatType z = static_cast<FloatType>((*depth)(y,x));
|
||||
ze::Position Xc_t = z * ze::Position(f[0]/f[2], f[1]/f[2], 1.);
|
||||
ze::Position r_OBJX = Xc_t - r_COBJ;
|
||||
ze::Matrix33 w_WOBJ_tilde = ze::skewSymmetric(angular_velocity_obj);
|
||||
for (int y = 0; y < flow->rows; ++y) {
|
||||
for (int x = 0; x < flow->cols; ++x) {
|
||||
ze::Keypoint u_t(x, y);
|
||||
ze::Bearing f = camera->backProject(u_t);
|
||||
const FloatType z = static_cast<FloatType>((*depth)(y, x));
|
||||
ze::Position Xc_t =
|
||||
z * ze::Position(f[0] / f[2], f[1] / f[2], 1.);
|
||||
ze::Position r_OBJX = Xc_t - r_COBJ;
|
||||
ze::Matrix33 w_WOBJ_tilde =
|
||||
ze::skewSymmetric(angular_velocity_obj);
|
||||
|
||||
ze::Transformation::Rotation dR = ze::Transformation::Rotation::exp(-angular_velocity * dt);
|
||||
ze::Transformation::Position dT = linear_velocity_obj*dt - linear_velocity * dt + w_WOBJ_tilde*r_OBJX*dt;
|
||||
ze::Transformation::Rotation dR =
|
||||
ze::Transformation::Rotation::exp(-angular_velocity * dt);
|
||||
ze::Transformation::Position dT = linear_velocity_obj * dt
|
||||
- linear_velocity * dt
|
||||
+ w_WOBJ_tilde * r_OBJX * dt;
|
||||
|
||||
// Transform Xc(t) to Xc(t+dt)
|
||||
ze::Transformation T_tdt_t;
|
||||
T_tdt_t.getRotation() = dR;
|
||||
T_tdt_t.getPosition() = dT;
|
||||
VLOG(5) << T_tdt_t;
|
||||
// Transform Xc(t) to Xc(t+dt)
|
||||
ze::Transformation T_tdt_t;
|
||||
T_tdt_t.getRotation() = dR;
|
||||
T_tdt_t.getPosition() = dT;
|
||||
VLOG(5) << T_tdt_t;
|
||||
|
||||
ze::Position Xc_t_dt = T_tdt_t.transform(Xc_t);
|
||||
ze::Position Xc_t_dt = T_tdt_t.transform(Xc_t);
|
||||
|
||||
// Project Xc(t+dt) in the image plane
|
||||
ze::Keypoint u_t_dt = camera->project(Xc_t_dt);
|
||||
VLOG(5) << u_t;
|
||||
VLOG(5) << u_t_dt;
|
||||
// Project Xc(t+dt) in the image plane
|
||||
ze::Keypoint u_t_dt = camera->project(Xc_t_dt);
|
||||
VLOG(5) << u_t;
|
||||
VLOG(5) << u_t_dt;
|
||||
|
||||
ze::Vector2 flow_vec = (u_t_dt - u_t) / dt;
|
||||
(*flow)(y,x) = cv::Vec<FloatType, 2>(flow_vec(0), flow_vec(1));
|
||||
ze::Vector2 flow_vec = (u_t_dt - u_t) / dt;
|
||||
(*flow)(y, x) = cv::Vec<FloatType, 2>(flow_vec(0), flow_vec(1));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
} // event_camera_simulator
|
||||
} // namespace event_camera_simulator
|
||||
|
||||
TEST(Utils, testOpticFlowComputation)
|
||||
{
|
||||
using namespace event_camera_simulator;
|
||||
TEST(Utils, testOpticFlowComputation) {
|
||||
using namespace event_camera_simulator;
|
||||
|
||||
// Load camera calib from folder
|
||||
const std::string path_to_data_folder = getTestDataDir("camera_calibs");
|
||||
ze::CameraRig::Ptr camera_rig
|
||||
= ze::cameraRigFromYaml(ze::joinPath(path_to_data_folder, "pinhole_mono.yaml"));
|
||||
// Load camera calib from folder
|
||||
const std::string path_to_data_folder = getTestDataDir("camera_calibs");
|
||||
ze::CameraRig::Ptr camera_rig = ze::cameraRigFromYaml(
|
||||
ze::joinPath(path_to_data_folder, "pinhole_mono.yaml")
|
||||
);
|
||||
|
||||
CHECK(camera_rig);
|
||||
CHECK(camera_rig);
|
||||
|
||||
const ze::Camera::Ptr camera = camera_rig->atShared(0);
|
||||
cv::Size sensor_size(camera->width(), camera->height());
|
||||
const ze::Camera::Ptr camera = camera_rig->atShared(0);
|
||||
cv::Size sensor_size(camera->width(), camera->height());
|
||||
|
||||
OpticFlowPtr flow_analytic =
|
||||
std::make_shared<OpticFlow>(sensor_size);
|
||||
OpticFlowPtr flow_analytic = std::make_shared<OpticFlow>(sensor_size);
|
||||
|
||||
// Sample random depth map
|
||||
const ImageFloatType z_mean = 5.0;
|
||||
const ImageFloatType z_stddev = 0.5;
|
||||
DepthmapPtr depth = std::make_shared<Depthmap>(sensor_size);
|
||||
for(int y=0; y<sensor_size.height; ++y)
|
||||
{
|
||||
for(int x=0; x<sensor_size.width; ++x)
|
||||
{
|
||||
(*depth)(y,x) = ze::sampleNormalDistribution(true, z_mean, z_stddev);
|
||||
// Sample random depth map
|
||||
const ImageFloatType z_mean = 5.0;
|
||||
const ImageFloatType z_stddev = 0.5;
|
||||
DepthmapPtr depth = std::make_shared<Depthmap>(sensor_size);
|
||||
for (int y = 0; y < sensor_size.height; ++y) {
|
||||
for (int x = 0; x < sensor_size.width; ++x) {
|
||||
(*depth)(y, x) =
|
||||
ze::sampleNormalDistribution(true, z_mean, z_stddev);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Sample random linear and angular velocity
|
||||
ze::Vector3 angular_velocity, linear_velocity;
|
||||
angular_velocity.setRandom();
|
||||
linear_velocity.setRandom();
|
||||
// Sample random linear and angular velocity
|
||||
ze::Vector3 angular_velocity, linear_velocity;
|
||||
angular_velocity.setRandom();
|
||||
linear_velocity.setRandom();
|
||||
|
||||
LOG(INFO) << "w = " << angular_velocity;
|
||||
LOG(INFO) << "v = " << linear_velocity;
|
||||
LOG(INFO) << "w = " << angular_velocity;
|
||||
LOG(INFO) << "v = " << linear_velocity;
|
||||
|
||||
// Compute optic flow on the image plane according
|
||||
// to the sampled angular/linear velocity
|
||||
OpticFlowHelper optic_flow_helper(camera);
|
||||
optic_flow_helper.computeFromDepthAndTwist(angular_velocity, linear_velocity,
|
||||
depth, flow_analytic);
|
||||
// Compute optic flow on the image plane according
|
||||
// to the sampled angular/linear velocity
|
||||
OpticFlowHelper optic_flow_helper(camera);
|
||||
optic_flow_helper.computeFromDepthAndTwist(
|
||||
angular_velocity,
|
||||
linear_velocity,
|
||||
depth,
|
||||
flow_analytic
|
||||
);
|
||||
|
||||
OpticFlowPtr flow_finite_diff =
|
||||
std::make_shared<OpticFlow>(sensor_size);
|
||||
OpticFlowPtr flow_finite_diff = std::make_shared<OpticFlow>(sensor_size);
|
||||
|
||||
computeOpticFlowFiniteDifference(camera, angular_velocity, linear_velocity,
|
||||
depth, flow_finite_diff);
|
||||
computeOpticFlowFiniteDifference(
|
||||
camera,
|
||||
angular_velocity,
|
||||
linear_velocity,
|
||||
depth,
|
||||
flow_finite_diff
|
||||
);
|
||||
|
||||
// Check that the analytical flow and finite-difference flow match
|
||||
for(int y=0; y<sensor_size.height; ++y)
|
||||
{
|
||||
for(int x=0; x<sensor_size.width; ++x)
|
||||
{
|
||||
EXPECT_NEAR((*flow_analytic)(y,x)[0], (*flow_finite_diff)(y,x)[0], 0.1);
|
||||
EXPECT_NEAR((*flow_analytic)(y,x)[1], (*flow_finite_diff)(y,x)[1], 0.1);
|
||||
// Check that the analytical flow and finite-difference flow match
|
||||
for (int y = 0; y < sensor_size.height; ++y) {
|
||||
for (int x = 0; x < sensor_size.width; ++x) {
|
||||
EXPECT_NEAR(
|
||||
(*flow_analytic)(y, x)[0],
|
||||
(*flow_finite_diff)(y, x)[0],
|
||||
0.1
|
||||
);
|
||||
EXPECT_NEAR(
|
||||
(*flow_analytic)(y, x)[1],
|
||||
(*flow_finite_diff)(y, x)[1],
|
||||
0.1
|
||||
);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**********************************************/
|
||||
/* repeat optic flow test for dynamic objects */
|
||||
/**********************************************/
|
||||
/**********************************************/
|
||||
/* repeat optic flow test for dynamic objects */
|
||||
/**********************************************/
|
||||
|
||||
// sample random obj position and linear and angular velocity
|
||||
ze::Vector3 r_COBJ;
|
||||
r_COBJ.setRandom();
|
||||
r_COBJ(2) = ze::sampleNormalDistribution(true, z_mean, z_stddev); // assume object is in front of camera
|
||||
// sample random obj position and linear and angular velocity
|
||||
ze::Vector3 r_COBJ;
|
||||
r_COBJ.setRandom();
|
||||
r_COBJ(2) = ze::sampleNormalDistribution(
|
||||
true,
|
||||
z_mean,
|
||||
z_stddev
|
||||
); // assume object is in front of camera
|
||||
|
||||
ze::Vector3 angular_velocity_obj, linear_velocity_obj;
|
||||
angular_velocity_obj.setRandom();
|
||||
linear_velocity_obj.setRandom();
|
||||
ze::Vector3 angular_velocity_obj, linear_velocity_obj;
|
||||
angular_velocity_obj.setRandom();
|
||||
linear_velocity_obj.setRandom();
|
||||
|
||||
// Compute optic flow on the image plane according
|
||||
// to the sampled angular/linear velocity
|
||||
optic_flow_helper.computeFromDepthCamTwistAndObjDepthAndTwist(angular_velocity, linear_velocity, depth,
|
||||
r_COBJ, angular_velocity_obj, linear_velocity_obj,
|
||||
flow_analytic);
|
||||
// Compute optic flow on the image plane according
|
||||
// to the sampled angular/linear velocity
|
||||
optic_flow_helper.computeFromDepthCamTwistAndObjDepthAndTwist(
|
||||
angular_velocity,
|
||||
linear_velocity,
|
||||
depth,
|
||||
r_COBJ,
|
||||
angular_velocity_obj,
|
||||
linear_velocity_obj,
|
||||
flow_analytic
|
||||
);
|
||||
|
||||
computeOpticFlowFiniteDifference(camera, angular_velocity, linear_velocity, depth,
|
||||
r_COBJ, angular_velocity_obj, linear_velocity_obj,
|
||||
flow_finite_diff);
|
||||
computeOpticFlowFiniteDifference(
|
||||
camera,
|
||||
angular_velocity,
|
||||
linear_velocity,
|
||||
depth,
|
||||
r_COBJ,
|
||||
angular_velocity_obj,
|
||||
linear_velocity_obj,
|
||||
flow_finite_diff
|
||||
);
|
||||
|
||||
// Check that the analytical flow and finite-difference flow match
|
||||
for(int y=0; y<sensor_size.height; ++y)
|
||||
{
|
||||
for(int x=0; x<sensor_size.width; ++x)
|
||||
{
|
||||
EXPECT_NEAR((*flow_analytic)(y,x)[0], (*flow_finite_diff)(y,x)[0], 0.1);
|
||||
EXPECT_NEAR((*flow_analytic)(y,x)[1], (*flow_finite_diff)(y,x)[1], 0.1);
|
||||
// Check that the analytical flow and finite-difference flow match
|
||||
for (int y = 0; y < sensor_size.height; ++y) {
|
||||
for (int x = 0; x < sensor_size.width; ++x) {
|
||||
EXPECT_NEAR(
|
||||
(*flow_analytic)(y, x)[0],
|
||||
(*flow_finite_diff)(y, x)[0],
|
||||
0.1
|
||||
);
|
||||
EXPECT_NEAR(
|
||||
(*flow_analytic)(y, x)[1],
|
||||
(*flow_finite_diff)(y, x)[1],
|
||||
0.1
|
||||
);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
ZE_UNITTEST_ENTRYPOINT
|
||||
|
@ -1,74 +1,72 @@
|
||||
#pragma once
|
||||
|
||||
#include <atomic>
|
||||
#include <esim/common/types.hpp>
|
||||
#include <functional>
|
||||
#include <memory>
|
||||
|
||||
#include <esim/common/types.hpp>
|
||||
#include <ze/common/macros.hpp>
|
||||
#include <ze/common/noncopyable.hpp>
|
||||
#include <ze/common/signal_handler.hpp>
|
||||
|
||||
// fwd
|
||||
namespace cv {
|
||||
class Mat;
|
||||
class Mat;
|
||||
}
|
||||
|
||||
namespace event_camera_simulator {
|
||||
|
||||
using Callback =
|
||||
std::function<void (const SimulatorData& sim_data)>;
|
||||
using Callback = std::function<void(const SimulatorData& sim_data)>;
|
||||
|
||||
enum class DataProviderType {
|
||||
RendererOnline,
|
||||
Folder,
|
||||
Rosbag
|
||||
};
|
||||
enum class DataProviderType { RendererOnline, Folder, Rosbag };
|
||||
|
||||
//! A data provider registers to a data source and triggers callbacks when
|
||||
//! new data is available.
|
||||
class DataProviderBase : ze::Noncopyable
|
||||
{
|
||||
public:
|
||||
ZE_POINTER_TYPEDEFS(DataProviderBase);
|
||||
//! A data provider registers to a data source and triggers callbacks when
|
||||
//! new data is available.
|
||||
class DataProviderBase : ze::Noncopyable {
|
||||
public:
|
||||
ZE_POINTER_TYPEDEFS(DataProviderBase);
|
||||
|
||||
DataProviderBase() = delete;
|
||||
DataProviderBase(DataProviderType type);
|
||||
virtual ~DataProviderBase() = default;
|
||||
DataProviderBase() = delete;
|
||||
DataProviderBase(DataProviderType type);
|
||||
virtual ~DataProviderBase() = default;
|
||||
|
||||
//! Process all callbacks. Waits until callback is processed.
|
||||
void spin();
|
||||
//! Process all callbacks. Waits until callback is processed.
|
||||
void spin();
|
||||
|
||||
//! Read next data field and process callback. Returns false when datatset finished.
|
||||
virtual bool spinOnce() = 0;
|
||||
//! Read next data field and process callback. Returns false when
|
||||
//! datatset finished.
|
||||
virtual bool spinOnce() = 0;
|
||||
|
||||
//! False if there is no more data to process or there was a shutdown signal.
|
||||
virtual bool ok() const = 0;
|
||||
//! False if there is no more data to process or there was a shutdown
|
||||
//! signal.
|
||||
virtual bool ok() const = 0;
|
||||
|
||||
//! Pause data provider.
|
||||
virtual void pause();
|
||||
//! Pause data provider.
|
||||
virtual void pause();
|
||||
|
||||
//! Stop data provider.
|
||||
virtual void shutdown();
|
||||
//! Stop data provider.
|
||||
virtual void shutdown();
|
||||
|
||||
//! Register callback function to call when new message is available.
|
||||
void registerCallback(const Callback& callback);
|
||||
//! Register callback function to call when new message is available.
|
||||
void registerCallback(const Callback& callback);
|
||||
|
||||
//! Returns the number of cameras in the rig
|
||||
virtual size_t numCameras() const = 0;
|
||||
//! Returns the number of cameras in the rig
|
||||
virtual size_t numCameras() const = 0;
|
||||
|
||||
//! Returns the camera rig
|
||||
ze::CameraRig::Ptr getCameraRig() { return camera_rig_; }
|
||||
//! Returns the camera rig
|
||||
ze::CameraRig::Ptr getCameraRig() {
|
||||
return camera_rig_;
|
||||
}
|
||||
|
||||
protected:
|
||||
DataProviderType type_;
|
||||
Callback callback_;
|
||||
volatile bool running_ = true;
|
||||
protected:
|
||||
DataProviderType type_;
|
||||
Callback callback_;
|
||||
volatile bool running_ = true;
|
||||
|
||||
ze::CameraRig::Ptr camera_rig_;
|
||||
ze::CameraRig::Ptr camera_rig_;
|
||||
|
||||
private:
|
||||
ze::SimpleSigtermHandler signal_handler_; //!< Sets running_ to false when Ctrl-C is pressed.
|
||||
};
|
||||
private:
|
||||
ze::SimpleSigtermHandler
|
||||
signal_handler_; //!< Sets running_ to false when Ctrl-C is pressed.
|
||||
};
|
||||
|
||||
} // namespace event_camera_simulator
|
||||
|
@ -1,10 +1,10 @@
|
||||
#pragma once
|
||||
|
||||
#include <gflags/gflags.h>
|
||||
#include <esim/data_provider/data_provider_base.hpp>
|
||||
#include <gflags/gflags.h>
|
||||
|
||||
namespace event_camera_simulator {
|
||||
|
||||
DataProviderBase::Ptr loadDataProviderFromGflags();
|
||||
DataProviderBase::Ptr loadDataProviderFromGflags();
|
||||
|
||||
} // namespace ze
|
||||
} // namespace event_camera_simulator
|
||||
|
@ -1,44 +1,41 @@
|
||||
#pragma once
|
||||
|
||||
#include <esim/data_provider/data_provider_base.hpp>
|
||||
#include <fstream>
|
||||
#include <map>
|
||||
#include <memory>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
#include <ze/cameras/camera_rig.hpp>
|
||||
#include <ze/common/macros.hpp>
|
||||
#include <ze/common/types.hpp>
|
||||
#include <esim/data_provider/data_provider_base.hpp>
|
||||
#include <ze/cameras/camera_rig.hpp>
|
||||
#include <fstream>
|
||||
|
||||
namespace event_camera_simulator {
|
||||
|
||||
class DataProviderFromFolder : public DataProviderBase
|
||||
{
|
||||
public:
|
||||
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
|
||||
class DataProviderFromFolder : public DataProviderBase {
|
||||
public:
|
||||
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
|
||||
|
||||
DataProviderFromFolder(const std::string& path_to_data_folder);
|
||||
DataProviderFromFolder(const std::string& path_to_data_folder);
|
||||
|
||||
virtual ~DataProviderFromFolder() = default;
|
||||
virtual ~DataProviderFromFolder() = default;
|
||||
|
||||
virtual bool spinOnce() override;
|
||||
virtual bool spinOnce() override;
|
||||
|
||||
virtual bool ok() const override;
|
||||
virtual bool ok() const override;
|
||||
|
||||
size_t numCameras() const override;
|
||||
size_t numCameras() const override;
|
||||
|
||||
private:
|
||||
private:
|
||||
int64_t getTimeStamp(const std::string& ts_str) const;
|
||||
|
||||
int64_t getTimeStamp(const std::string& ts_str) const;
|
||||
std::string path_to_data_folder_;
|
||||
std::ifstream images_in_str_;
|
||||
const char delimiter_{','};
|
||||
const size_t num_tokens_in_line_ = 2; // stamp, image
|
||||
bool finished_parsing_;
|
||||
|
||||
std::string path_to_data_folder_;
|
||||
std::ifstream images_in_str_;
|
||||
const char delimiter_{','};
|
||||
const size_t num_tokens_in_line_ = 2; // stamp, image
|
||||
bool finished_parsing_;
|
||||
|
||||
SimulatorData sim_data_;
|
||||
};
|
||||
SimulatorData sim_data_;
|
||||
};
|
||||
|
||||
} // namespace event_camera_simulator
|
||||
|
@ -1,75 +1,77 @@
|
||||
#pragma once
|
||||
|
||||
#include <esim/common/utils.hpp>
|
||||
#include <esim/data_provider/data_provider_base.hpp>
|
||||
#include <esim/rendering/renderer_base.hpp>
|
||||
#include <map>
|
||||
#include <memory>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
#include <ze/cameras/camera_rig.hpp>
|
||||
#include <ze/common/macros.hpp>
|
||||
#include <ze/common/types.hpp>
|
||||
#include <esim/data_provider/data_provider_base.hpp>
|
||||
#include <esim/rendering/renderer_base.hpp>
|
||||
#include <esim/common/utils.hpp>
|
||||
|
||||
#include <ze/vi_simulation/trajectory_simulator.hpp>
|
||||
#include <ze/vi_simulation/imu_simulator.hpp>
|
||||
#include <ze/cameras/camera_rig.hpp>
|
||||
|
||||
#include <ze/vi_simulation/trajectory_simulator.hpp>
|
||||
|
||||
namespace event_camera_simulator {
|
||||
|
||||
/**
|
||||
* Online data provider intended to simulate a camera rig composed of multiple
|
||||
* cameras rigidly attached together, along with an Inertial Measurement Unit (IMU).
|
||||
*
|
||||
* The camera rig follows a camera trajectory in 3D.
|
||||
*/
|
||||
class DataProviderOnlineMoving3DCameraRig : public DataProviderBase
|
||||
{
|
||||
public:
|
||||
DataProviderOnlineMoving3DCameraRig(ze::real_t simulation_minimum_framerate,
|
||||
ze::real_t simulation_imu_rate,
|
||||
int simulation_adaptive_sampling_method,
|
||||
ze::real_t simulation_adaptive_sampling_lambda);
|
||||
/**
|
||||
* Online data provider intended to simulate a camera rig composed of
|
||||
* multiple cameras rigidly attached together, along with an Inertial
|
||||
* Measurement Unit (IMU).
|
||||
*
|
||||
* The camera rig follows a camera trajectory in 3D.
|
||||
*/
|
||||
class DataProviderOnlineMoving3DCameraRig : public DataProviderBase {
|
||||
public:
|
||||
DataProviderOnlineMoving3DCameraRig(
|
||||
ze::real_t simulation_minimum_framerate,
|
||||
ze::real_t simulation_imu_rate,
|
||||
int simulation_adaptive_sampling_method,
|
||||
ze::real_t simulation_adaptive_sampling_lambda
|
||||
);
|
||||
|
||||
virtual ~DataProviderOnlineMoving3DCameraRig();
|
||||
virtual ~DataProviderOnlineMoving3DCameraRig();
|
||||
|
||||
virtual bool spinOnce() override;
|
||||
virtual bool spinOnce() override;
|
||||
|
||||
virtual bool ok() const override;
|
||||
virtual bool ok() const override;
|
||||
|
||||
size_t numCameras() const override;
|
||||
size_t numCameras() const override;
|
||||
|
||||
private:
|
||||
private:
|
||||
void updateGroundtruth();
|
||||
void sampleImu();
|
||||
void sampleFrame();
|
||||
|
||||
void updateGroundtruth();
|
||||
void sampleImu();
|
||||
void sampleFrame();
|
||||
void setImuUpdated();
|
||||
void setFrameUpdated();
|
||||
void setAllUpdated();
|
||||
|
||||
void setImuUpdated();
|
||||
void setFrameUpdated();
|
||||
void setAllUpdated();
|
||||
std::vector<Renderer::Ptr> renderers_;
|
||||
std::vector<OpticFlowHelper::Ptr> optic_flow_helpers_;
|
||||
ze::TrajectorySimulator::Ptr trajectory_;
|
||||
ze::ImuSimulator::Ptr imu_;
|
||||
SimulatorData sim_data_;
|
||||
|
||||
std::vector<Renderer::Ptr> renderers_;
|
||||
std::vector<OpticFlowHelper::Ptr> optic_flow_helpers_;
|
||||
ze::TrajectorySimulator::Ptr trajectory_;
|
||||
ze::ImuSimulator::Ptr imu_;
|
||||
SimulatorData sim_data_;
|
||||
ze::real_t t_;
|
||||
ze::real_t last_t_frame_; // latest next sampling time in order to
|
||||
// guarantee the IMU rate
|
||||
ze::real_t last_t_imu_; // latest next sampling time in order to
|
||||
// guarantee the minimum frame rate
|
||||
ze::real_t next_t_flow_; // latest next sampling time in order to
|
||||
// guarantee that the max pixel displacement
|
||||
// since the last frame is bounded
|
||||
ze::real_t dt_imu_;
|
||||
ze::real_t dt_frame_;
|
||||
|
||||
ze::real_t t_;
|
||||
ze::real_t last_t_frame_; // latest next sampling time in order to guarantee the IMU rate
|
||||
ze::real_t last_t_imu_; // latest next sampling time in order to guarantee the minimum frame rate
|
||||
ze::real_t next_t_flow_; // latest next sampling time in order to guarantee that the max pixel displacement since the last frame is bounded
|
||||
ze::real_t dt_imu_;
|
||||
ze::real_t dt_frame_;
|
||||
ze::real_t simulation_minimum_framerate_;
|
||||
ze::real_t simulation_imu_rate_;
|
||||
int simulation_adaptive_sampling_method_;
|
||||
ze::real_t simulation_adaptive_sampling_lambda_;
|
||||
|
||||
ze::real_t simulation_minimum_framerate_;
|
||||
ze::real_t simulation_imu_rate_;
|
||||
int simulation_adaptive_sampling_method_;
|
||||
ze::real_t simulation_adaptive_sampling_lambda_;
|
||||
|
||||
// dynamic objects
|
||||
std::vector<ze::TrajectorySimulator::Ptr> trajectory_dyn_obj_;
|
||||
};
|
||||
// dynamic objects
|
||||
std::vector<ze::TrajectorySimulator::Ptr> trajectory_dyn_obj_;
|
||||
};
|
||||
|
||||
} // namespace event_camera_simulator
|
||||
|
@ -1,54 +1,56 @@
|
||||
#pragma once
|
||||
|
||||
#include <esim/data_provider/data_provider_base.hpp>
|
||||
#include <esim/rendering/simple_renderer_base.hpp>
|
||||
#include <map>
|
||||
#include <memory>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
#include <ze/common/macros.hpp>
|
||||
#include <ze/common/types.hpp>
|
||||
#include <esim/data_provider/data_provider_base.hpp>
|
||||
#include <esim/rendering/simple_renderer_base.hpp>
|
||||
|
||||
|
||||
namespace event_camera_simulator {
|
||||
|
||||
/**
|
||||
* Simple online data provider, intended to simulate a single event camera
|
||||
* based on images + optic flow maps provided by a rendering engine.
|
||||
*
|
||||
* This data provider does NOT simulate a camera trajectory or an IMU.
|
||||
*/
|
||||
class DataProviderOnlineSimple : public DataProviderBase
|
||||
{
|
||||
public:
|
||||
DataProviderOnlineSimple(ze::real_t simulation_minimum_framerate,
|
||||
int simulation_adaptive_sampling_method,
|
||||
ze::real_t simulation_adaptive_sampling_lambda);
|
||||
/**
|
||||
* Simple online data provider, intended to simulate a single event camera
|
||||
* based on images + optic flow maps provided by a rendering engine.
|
||||
*
|
||||
* This data provider does NOT simulate a camera trajectory or an IMU.
|
||||
*/
|
||||
class DataProviderOnlineSimple : public DataProviderBase {
|
||||
public:
|
||||
DataProviderOnlineSimple(
|
||||
ze::real_t simulation_minimum_framerate,
|
||||
int simulation_adaptive_sampling_method,
|
||||
ze::real_t simulation_adaptive_sampling_lambda
|
||||
);
|
||||
|
||||
virtual ~DataProviderOnlineSimple();
|
||||
virtual ~DataProviderOnlineSimple();
|
||||
|
||||
virtual bool spinOnce() override;
|
||||
virtual bool spinOnce() override;
|
||||
|
||||
virtual bool ok() const override;
|
||||
virtual bool ok() const override;
|
||||
|
||||
size_t numCameras() const override;
|
||||
size_t numCameras() const override;
|
||||
|
||||
private:
|
||||
bool sampleFrame();
|
||||
void setFrameUpdated();
|
||||
private:
|
||||
bool sampleFrame();
|
||||
void setFrameUpdated();
|
||||
|
||||
SimpleRenderer::Ptr renderer_;
|
||||
SimulatorData sim_data_;
|
||||
SimpleRenderer::Ptr renderer_;
|
||||
SimulatorData sim_data_;
|
||||
|
||||
ze::real_t t_;
|
||||
ze::real_t last_t_frame_; // latest next sampling time in order to guarantee the minimum frame rate
|
||||
ze::real_t next_t_adaptive_; // latest next sampling time in order to guarantee that the adaptive sampling scheme is respected
|
||||
ze::real_t dt_frame_;
|
||||
ze::real_t t_;
|
||||
ze::real_t last_t_frame_; // latest next sampling time in order to
|
||||
// guarantee the minimum frame rate
|
||||
ze::real_t
|
||||
next_t_adaptive_; // latest next sampling time in order to guarantee
|
||||
// that the adaptive sampling scheme is respected
|
||||
ze::real_t dt_frame_;
|
||||
|
||||
ze::real_t simulation_minimum_framerate_;
|
||||
int simulation_adaptive_sampling_method_;
|
||||
ze::real_t simulation_adaptive_sampling_lambda_;
|
||||
};
|
||||
ze::real_t simulation_minimum_framerate_;
|
||||
int simulation_adaptive_sampling_method_;
|
||||
ze::real_t simulation_adaptive_sampling_lambda_;
|
||||
};
|
||||
|
||||
} // namespace event_camera_simulator
|
||||
|
@ -1,57 +1,57 @@
|
||||
// This file was adapted from the ze_oss project: https://github.com/zurich-eye/ze_oss/blob/master/ze_data_provider/include/ze/data_provider/data_provider_rosbag.hpp
|
||||
// This file was adapted from the ze_oss project:
|
||||
// https://github.com/zurich-eye/ze_oss/blob/master/ze_data_provider/include/ze/data_provider/data_provider_rosbag.hpp
|
||||
// Copyright (C) ETH Zurich, Wyss Zurich, Zurich Eye - All Rights Reserved
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <esim/data_provider/data_provider_base.hpp>
|
||||
#include <gflags/gflags.h>
|
||||
#include <map>
|
||||
#include <string>
|
||||
#include <memory>
|
||||
#include <vector>
|
||||
|
||||
#include<gflags/gflags.h>
|
||||
|
||||
#include <rosbag/bag.h>
|
||||
#include <rosbag/view.h>
|
||||
|
||||
#include <sensor_msgs/Image.h>
|
||||
|
||||
#include <esim/data_provider/data_provider_base.hpp>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
namespace event_camera_simulator {
|
||||
|
||||
class DataProviderRosbag : public DataProviderBase
|
||||
{
|
||||
public:
|
||||
DataProviderRosbag(
|
||||
const std::string& bag_filename,
|
||||
const std::map<std::string, size_t>& camera_topics);
|
||||
class DataProviderRosbag : public DataProviderBase {
|
||||
public:
|
||||
DataProviderRosbag(
|
||||
const std::string& bag_filename,
|
||||
const std::map<std::string, size_t>& camera_topics
|
||||
);
|
||||
|
||||
virtual ~DataProviderRosbag() = default;
|
||||
virtual ~DataProviderRosbag() = default;
|
||||
|
||||
virtual bool spinOnce() override;
|
||||
virtual bool spinOnce() override;
|
||||
|
||||
virtual bool ok() const override;
|
||||
virtual bool ok() const override;
|
||||
|
||||
virtual size_t numCameras() const;
|
||||
virtual size_t numCameras() const;
|
||||
|
||||
size_t size() const;
|
||||
size_t size() const;
|
||||
|
||||
private:
|
||||
void loadRosbag(const std::string& bag_filename);
|
||||
void initBagView(const std::vector<std::string>& topics);
|
||||
private:
|
||||
void loadRosbag(const std::string& bag_filename);
|
||||
void initBagView(const std::vector<std::string>& topics);
|
||||
|
||||
inline bool cameraSpin(const sensor_msgs::ImageConstPtr m_img,
|
||||
const rosbag::MessageInstance& m);
|
||||
inline bool cameraSpin(
|
||||
const sensor_msgs::ImageConstPtr m_img,
|
||||
const rosbag::MessageInstance& m
|
||||
);
|
||||
|
||||
std::unique_ptr<rosbag::Bag> bag_;
|
||||
std::unique_ptr<rosbag::View> bag_view_;
|
||||
rosbag::View::iterator bag_view_it_;
|
||||
int n_processed_images_ = 0;
|
||||
std::unique_ptr<rosbag::Bag> bag_;
|
||||
std::unique_ptr<rosbag::View> bag_view_;
|
||||
rosbag::View::iterator bag_view_it_;
|
||||
int n_processed_images_ = 0;
|
||||
|
||||
// subscribed topics:
|
||||
std::map<std::string, size_t> img_topic_camidx_map_; // camera_topic --> camera_id
|
||||
// subscribed topics:
|
||||
std::map<std::string, size_t>
|
||||
img_topic_camidx_map_; // camera_topic --> camera_id
|
||||
|
||||
SimulatorData sim_data_;
|
||||
};
|
||||
SimulatorData sim_data_;
|
||||
};
|
||||
|
||||
} // namespace event_camera_simulator
|
||||
|
@ -1,13 +1,13 @@
|
||||
#pragma once
|
||||
|
||||
#include <gflags/gflags.h>
|
||||
#include <esim/rendering/renderer_base.hpp>
|
||||
#include <esim/rendering/simple_renderer_base.hpp>
|
||||
#include <gflags/gflags.h>
|
||||
|
||||
namespace event_camera_simulator {
|
||||
|
||||
bool loadPreprocessedImage(const std::string& path_to_img, cv::Mat *img);
|
||||
Renderer::Ptr loadRendererFromGflags();
|
||||
SimpleRenderer::Ptr loadSimpleRendererFromGflags();
|
||||
bool loadPreprocessedImage(const std::string& path_to_img, cv::Mat* img);
|
||||
Renderer::Ptr loadRendererFromGflags();
|
||||
SimpleRenderer::Ptr loadSimpleRendererFromGflags();
|
||||
|
||||
} // namespace event_camera_simulator
|
||||
|
@ -2,32 +2,25 @@
|
||||
|
||||
namespace event_camera_simulator {
|
||||
|
||||
DataProviderBase::DataProviderBase(DataProviderType type)
|
||||
: type_(type)
|
||||
, signal_handler_(running_)
|
||||
{}
|
||||
DataProviderBase::DataProviderBase(DataProviderType type)
|
||||
: type_(type),
|
||||
signal_handler_(running_) {}
|
||||
|
||||
void DataProviderBase::spin()
|
||||
{
|
||||
while (ok())
|
||||
{
|
||||
spinOnce();
|
||||
}
|
||||
}
|
||||
void DataProviderBase::spin() {
|
||||
while (ok())
|
||||
spinOnce();
|
||||
}
|
||||
|
||||
void DataProviderBase::pause()
|
||||
{
|
||||
running_ = false;
|
||||
}
|
||||
void DataProviderBase::pause() {
|
||||
running_ = false;
|
||||
}
|
||||
|
||||
void DataProviderBase::shutdown()
|
||||
{
|
||||
running_ = false;
|
||||
}
|
||||
void DataProviderBase::shutdown() {
|
||||
running_ = false;
|
||||
}
|
||||
|
||||
void DataProviderBase::registerCallback(const Callback& callback)
|
||||
{
|
||||
callback_ = callback;
|
||||
}
|
||||
void DataProviderBase::registerCallback(const Callback& callback) {
|
||||
callback_ = callback;
|
||||
}
|
||||
|
||||
} // namespace event_camera_simulator
|
||||
|
@ -1,38 +1,50 @@
|
||||
#include <ze/common/logging.hpp>
|
||||
#include <esim/data_provider/data_provider_factory.hpp>
|
||||
#include <esim/data_provider/data_provider_base.hpp>
|
||||
#include <esim/data_provider/data_provider_factory.hpp>
|
||||
#include <esim/data_provider/data_provider_from_folder.hpp>
|
||||
#include <esim/data_provider/data_provider_online_render.hpp>
|
||||
#include <esim/data_provider/data_provider_online_simple.hpp>
|
||||
#include <esim/data_provider/data_provider_from_folder.hpp>
|
||||
#include <esim/data_provider/data_provider_rosbag.hpp>
|
||||
#include <ze/common/logging.hpp>
|
||||
|
||||
DEFINE_int32(data_source, 0, " 0: Online renderer");
|
||||
|
||||
DEFINE_double(simulation_minimum_framerate, 30.0,
|
||||
"Minimum frame rate, in Hz"
|
||||
"Especially useful when the event rate is low, to guarantee"
|
||||
"that frames are still published at a minimum framerate");
|
||||
DEFINE_double(
|
||||
simulation_minimum_framerate,
|
||||
30.0,
|
||||
"Minimum frame rate, in Hz"
|
||||
"Especially useful when the event rate is low, to guarantee"
|
||||
"that frames are still published at a minimum framerate"
|
||||
);
|
||||
|
||||
DEFINE_double(simulation_imu_rate, 1000.0,
|
||||
"Fixed IMU sampling frequency, in Hz");
|
||||
DEFINE_double(
|
||||
simulation_imu_rate, 1000.0, "Fixed IMU sampling frequency, in Hz"
|
||||
);
|
||||
|
||||
DEFINE_int32(simulation_adaptive_sampling_method, 0,
|
||||
"Method to use for adaptive sampling."
|
||||
"0: based on predicted absolute brightness change"
|
||||
"1: based on optic flow");
|
||||
DEFINE_int32(
|
||||
simulation_adaptive_sampling_method,
|
||||
0,
|
||||
"Method to use for adaptive sampling."
|
||||
"0: based on predicted absolute brightness change"
|
||||
"1: based on optic flow"
|
||||
);
|
||||
|
||||
DEFINE_double(simulation_adaptive_sampling_lambda, 0.5,
|
||||
"Parameter that controls the behavior of the adaptive sampling method."
|
||||
"The meaning of this value depends on the adaptive sampling method used:"
|
||||
"...based on predicted absolute brightness change: deltaT = lambda / max(|dL/dt|)"
|
||||
"...based on optic flow: deltaT = lambda \ max(||du/dt||) where du/dt denotes the 2D optic flow field.");
|
||||
|
||||
DEFINE_string(path_to_data_folder, "",
|
||||
"Path to folder containing the data.");
|
||||
DEFINE_double(
|
||||
simulation_adaptive_sampling_lambda,
|
||||
0.5,
|
||||
"Parameter that controls the behavior of the adaptive sampling method."
|
||||
"The meaning of this value depends on the adaptive sampling method used:"
|
||||
"...based on predicted absolute brightness change: deltaT = lambda / "
|
||||
"max(|dL/dt|)"
|
||||
"...based on optic flow: deltaT = lambda \ max(||du/dt||) where du/dt "
|
||||
"denotes the 2D optic flow field."
|
||||
);
|
||||
|
||||
DEFINE_string(path_to_data_folder, "", "Path to folder containing the data.");
|
||||
|
||||
// Parameters for the DataProviderRosbag
|
||||
DEFINE_string(bag_filename, "dataset.bag", "Name of bagfile from which to read.");
|
||||
DEFINE_string(
|
||||
bag_filename, "dataset.bag", "Name of bagfile from which to read."
|
||||
);
|
||||
DEFINE_string(topic_cam0, "/cam0/image_raw", "");
|
||||
DEFINE_string(topic_cam1, "/cam1/image_raw", "");
|
||||
DEFINE_string(topic_cam2, "/cam2/image_raw", "");
|
||||
@ -41,59 +53,64 @@ DEFINE_uint64(num_cams, 1, "Number of normal cameras to read from rosbag.");
|
||||
|
||||
namespace event_camera_simulator {
|
||||
|
||||
DataProviderBase::Ptr loadDataProviderFromGflags()
|
||||
{
|
||||
// Create data provider.
|
||||
DataProviderBase::Ptr data_provider;
|
||||
switch (FLAGS_data_source)
|
||||
{
|
||||
case 0: // Online Renderer for Moving 3D Camera Rig with IMU
|
||||
{
|
||||
data_provider.reset(
|
||||
new DataProviderOnlineMoving3DCameraRig(FLAGS_simulation_minimum_framerate,
|
||||
FLAGS_simulation_imu_rate,
|
||||
FLAGS_simulation_adaptive_sampling_method,
|
||||
FLAGS_simulation_adaptive_sampling_lambda));
|
||||
break;
|
||||
}
|
||||
case 1: // Online Renderer Simple
|
||||
{
|
||||
data_provider.reset(
|
||||
new DataProviderOnlineSimple(FLAGS_simulation_minimum_framerate,
|
||||
FLAGS_simulation_adaptive_sampling_method,
|
||||
FLAGS_simulation_adaptive_sampling_lambda));
|
||||
break;
|
||||
}
|
||||
case 2: // Read data from a folder
|
||||
{
|
||||
data_provider.reset(
|
||||
new DataProviderFromFolder(FLAGS_path_to_data_folder));
|
||||
break;
|
||||
}
|
||||
case 3: // Read data (images) from a rosbag
|
||||
{
|
||||
CHECK_LE(FLAGS_num_cams, 4u);
|
||||
CHECK_EQ(FLAGS_num_cams, 1u) << "Only one camera is supported currently";
|
||||
DataProviderBase::Ptr loadDataProviderFromGflags() {
|
||||
// Create data provider.
|
||||
DataProviderBase::Ptr data_provider;
|
||||
switch (FLAGS_data_source) {
|
||||
case 0: // Online Renderer for Moving 3D Camera Rig with IMU
|
||||
{
|
||||
data_provider.reset(new DataProviderOnlineMoving3DCameraRig(
|
||||
FLAGS_simulation_minimum_framerate,
|
||||
FLAGS_simulation_imu_rate,
|
||||
FLAGS_simulation_adaptive_sampling_method,
|
||||
FLAGS_simulation_adaptive_sampling_lambda
|
||||
));
|
||||
break;
|
||||
}
|
||||
case 1: // Online Renderer Simple
|
||||
{
|
||||
data_provider.reset(new DataProviderOnlineSimple(
|
||||
FLAGS_simulation_minimum_framerate,
|
||||
FLAGS_simulation_adaptive_sampling_method,
|
||||
FLAGS_simulation_adaptive_sampling_lambda
|
||||
));
|
||||
break;
|
||||
}
|
||||
case 2: // Read data from a folder
|
||||
{
|
||||
data_provider.reset(
|
||||
new DataProviderFromFolder(FLAGS_path_to_data_folder)
|
||||
);
|
||||
break;
|
||||
}
|
||||
case 3: // Read data (images) from a rosbag
|
||||
{
|
||||
CHECK_LE(FLAGS_num_cams, 4u);
|
||||
CHECK_EQ(FLAGS_num_cams, 1u)
|
||||
<< "Only one camera is supported currently";
|
||||
|
||||
// Fill camera topics.
|
||||
std::map<std::string, size_t> cam_topics;
|
||||
if (FLAGS_num_cams >= 1) cam_topics[FLAGS_topic_cam0] = 0;
|
||||
if (FLAGS_num_cams >= 2) cam_topics[FLAGS_topic_cam1] = 1;
|
||||
if (FLAGS_num_cams >= 3) cam_topics[FLAGS_topic_cam2] = 2;
|
||||
if (FLAGS_num_cams >= 4) cam_topics[FLAGS_topic_cam3] = 3;
|
||||
data_provider.reset(
|
||||
new DataProviderRosbag(FLAGS_bag_filename,
|
||||
cam_topics));
|
||||
break;
|
||||
}
|
||||
default:
|
||||
{
|
||||
LOG(FATAL) << "Data source not known.";
|
||||
break;
|
||||
}
|
||||
}
|
||||
// Fill camera topics.
|
||||
std::map<std::string, size_t> cam_topics;
|
||||
if (FLAGS_num_cams >= 1)
|
||||
cam_topics[FLAGS_topic_cam0] = 0;
|
||||
if (FLAGS_num_cams >= 2)
|
||||
cam_topics[FLAGS_topic_cam1] = 1;
|
||||
if (FLAGS_num_cams >= 3)
|
||||
cam_topics[FLAGS_topic_cam2] = 2;
|
||||
if (FLAGS_num_cams >= 4)
|
||||
cam_topics[FLAGS_topic_cam3] = 3;
|
||||
data_provider.reset(
|
||||
new DataProviderRosbag(FLAGS_bag_filename, cam_topics)
|
||||
);
|
||||
break;
|
||||
}
|
||||
default: {
|
||||
LOG(FATAL) << "Data source not known.";
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
return data_provider;
|
||||
}
|
||||
return data_provider;
|
||||
}
|
||||
|
||||
} // namespace ze
|
||||
} // namespace event_camera_simulator
|
||||
|
@ -1,92 +1,105 @@
|
||||
#include <esim/data_provider/data_provider_from_folder.hpp>
|
||||
#include <ze/common/file_utils.hpp>
|
||||
#include <opencv2/imgcodecs/imgcodecs.hpp>
|
||||
#include <ze/cameras/camera_impl.hpp>
|
||||
#include <ze/common/file_utils.hpp>
|
||||
|
||||
namespace event_camera_simulator {
|
||||
|
||||
DataProviderFromFolder::DataProviderFromFolder(const std::string& path_to_data_folder)
|
||||
: DataProviderBase(DataProviderType::Folder),
|
||||
path_to_data_folder_(path_to_data_folder),
|
||||
finished_parsing_(false)
|
||||
{
|
||||
// Load CSV image file
|
||||
images_in_str_.open(ze::joinPath(path_to_data_folder, "images.csv"));
|
||||
CHECK(images_in_str_.is_open());
|
||||
DataProviderFromFolder::DataProviderFromFolder(
|
||||
const std::string& path_to_data_folder
|
||||
)
|
||||
: DataProviderBase(DataProviderType::Folder),
|
||||
path_to_data_folder_(path_to_data_folder),
|
||||
finished_parsing_(false) {
|
||||
// Load CSV image file
|
||||
images_in_str_.open(ze::joinPath(path_to_data_folder, "images.csv"));
|
||||
CHECK(images_in_str_.is_open());
|
||||
|
||||
// Create dummy camera rig
|
||||
// these intrinsic values are filled with garbage (width = height = 1) since the actual values are not known
|
||||
ze::CameraVector cameras;
|
||||
cameras.emplace_back(ze::createEquidistantCameraShared(1, 1, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0));
|
||||
ze::TransformationVector extrinsics;
|
||||
extrinsics.push_back(ze::Transformation());
|
||||
camera_rig_ = std::make_shared<ze::CameraRig>(extrinsics, cameras, "camera");
|
||||
// Create dummy camera rig
|
||||
// these intrinsic values are filled with garbage (width = height = 1)
|
||||
// since the actual values are not known
|
||||
ze::CameraVector cameras;
|
||||
cameras.emplace_back(ze::createEquidistantCameraShared(
|
||||
1,
|
||||
1,
|
||||
1.0,
|
||||
1.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0
|
||||
));
|
||||
ze::TransformationVector extrinsics;
|
||||
extrinsics.push_back(ze::Transformation());
|
||||
camera_rig_ =
|
||||
std::make_shared<ze::CameraRig>(extrinsics, cameras, "camera");
|
||||
|
||||
// Allocate memory for image data
|
||||
sim_data_.images.emplace_back(ImagePtr(new Image(
|
||||
cv::Size(camera_rig_->at(0).width(),
|
||||
camera_rig_->at(0).height()))));
|
||||
// Allocate memory for image data
|
||||
sim_data_.images.emplace_back(ImagePtr(new Image(
|
||||
cv::Size(camera_rig_->at(0).width(), camera_rig_->at(0).height())
|
||||
)));
|
||||
|
||||
sim_data_.camera_rig = camera_rig_;
|
||||
sim_data_.images_updated = true;
|
||||
sim_data_.depthmaps_updated = false;
|
||||
sim_data_.optic_flows_updated = false;
|
||||
sim_data_.twists_updated = false;
|
||||
sim_data_.poses_updated = false;
|
||||
sim_data_.imu_updated = false;
|
||||
}
|
||||
|
||||
int64_t DataProviderFromFolder::getTimeStamp(const std::string& ts_str) const
|
||||
{
|
||||
return std::stoll(ts_str);
|
||||
}
|
||||
|
||||
size_t DataProviderFromFolder::numCameras() const
|
||||
{
|
||||
return camera_rig_->size();
|
||||
}
|
||||
|
||||
bool DataProviderFromFolder::spinOnce()
|
||||
{
|
||||
std::string line;
|
||||
if(!getline(images_in_str_, line))
|
||||
{
|
||||
VLOG(1) << "Finished parsing images.csv file";
|
||||
finished_parsing_ = true;
|
||||
return false;
|
||||
}
|
||||
|
||||
if('%' != line.at(0) && '#' != line.at(0))
|
||||
{
|
||||
std::vector<std::string> items = ze::splitString(line, delimiter_);
|
||||
CHECK_GE(items.size(), num_tokens_in_line_);
|
||||
int64_t stamp = getTimeStamp(items[0]);
|
||||
|
||||
const std::string& path_to_image = ze::joinPath(path_to_data_folder_, items[1]);
|
||||
cv::Mat image = cv::imread(path_to_image, 0);
|
||||
CHECK(image.data) << "Could not load image from file: " << path_to_image;
|
||||
|
||||
VLOG(3) << "Read image from file: " << path_to_image;
|
||||
image.convertTo(*sim_data_.images[0], cv::DataType<ImageFloatType>::type, 1./255.);
|
||||
|
||||
if(callback_)
|
||||
{
|
||||
sim_data_.timestamp = static_cast<Time>(stamp);
|
||||
callback_(sim_data_);
|
||||
sim_data_.camera_rig = camera_rig_;
|
||||
sim_data_.images_updated = true;
|
||||
sim_data_.depthmaps_updated = false;
|
||||
sim_data_.optic_flows_updated = false;
|
||||
sim_data_.twists_updated = false;
|
||||
sim_data_.poses_updated = false;
|
||||
sim_data_.imu_updated = false;
|
||||
}
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
int64_t DataProviderFromFolder::getTimeStamp(const std::string& ts_str
|
||||
) const {
|
||||
return std::stoll(ts_str);
|
||||
}
|
||||
|
||||
bool DataProviderFromFolder::ok() const
|
||||
{
|
||||
if (!running_ || finished_parsing_)
|
||||
{
|
||||
VLOG(1) << "Data Provider was paused/terminated.";
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
size_t DataProviderFromFolder::numCameras() const {
|
||||
return camera_rig_->size();
|
||||
}
|
||||
|
||||
bool DataProviderFromFolder::spinOnce() {
|
||||
std::string line;
|
||||
if (!getline(images_in_str_, line)) {
|
||||
VLOG(1) << "Finished parsing images.csv file";
|
||||
finished_parsing_ = true;
|
||||
return false;
|
||||
}
|
||||
|
||||
if ('%' != line.at(0) && '#' != line.at(0)) {
|
||||
std::vector<std::string> items = ze::splitString(line, delimiter_);
|
||||
CHECK_GE(items.size(), num_tokens_in_line_);
|
||||
int64_t stamp = getTimeStamp(items[0]);
|
||||
|
||||
const std::string& path_to_image =
|
||||
ze::joinPath(path_to_data_folder_, items[1]);
|
||||
cv::Mat image = cv::imread(path_to_image, 0);
|
||||
CHECK(image.data)
|
||||
<< "Could not load image from file: " << path_to_image;
|
||||
|
||||
VLOG(3) << "Read image from file: " << path_to_image;
|
||||
image.convertTo(
|
||||
*sim_data_.images[0],
|
||||
cv::DataType<ImageFloatType>::type,
|
||||
1. / 255.
|
||||
);
|
||||
|
||||
if (callback_) {
|
||||
sim_data_.timestamp = static_cast<Time>(stamp);
|
||||
callback_(sim_data_);
|
||||
}
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
bool DataProviderFromFolder::ok() const {
|
||||
if (!running_ || finished_parsing_) {
|
||||
VLOG(1) << "Data Provider was paused/terminated.";
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
} // namespace event_camera_simulator
|
||||
|
@ -1,420 +1,450 @@
|
||||
#include <esim/data_provider/data_provider_online_render.hpp>
|
||||
#include <esim/trajectory/trajectory_factory.hpp>
|
||||
#include <esim/trajectory/imu_factory.hpp>
|
||||
#include <esim/data_provider/renderer_factory.hpp>
|
||||
#include <esim/common/utils.hpp>
|
||||
|
||||
#include <esim/data_provider/data_provider_online_render.hpp>
|
||||
#include <esim/data_provider/renderer_factory.hpp>
|
||||
#include <esim/trajectory/imu_factory.hpp>
|
||||
#include <esim/trajectory/trajectory_factory.hpp>
|
||||
#include <ze/cameras/camera_rig.hpp>
|
||||
#include <ze/common/time_conversions.hpp>
|
||||
#include <ze/common/timer_collection.hpp>
|
||||
|
||||
DECLARE_TIMER(TimerDataProvider, timers_data_provider_,
|
||||
render,
|
||||
optic_flow,
|
||||
sample_frame,
|
||||
sample_imu
|
||||
);
|
||||
DECLARE_TIMER(
|
||||
TimerDataProvider,
|
||||
timers_data_provider_,
|
||||
render,
|
||||
optic_flow,
|
||||
sample_frame,
|
||||
sample_imu
|
||||
);
|
||||
|
||||
DEFINE_double(simulation_post_gaussian_blur_sigma, 0,
|
||||
"If sigma > 0, Gaussian blur the renderered images"
|
||||
"with a Gaussian filter standard deviation sigma.");
|
||||
DEFINE_double(
|
||||
simulation_post_gaussian_blur_sigma,
|
||||
0,
|
||||
"If sigma > 0, Gaussian blur the renderered images"
|
||||
"with a Gaussian filter standard deviation sigma."
|
||||
);
|
||||
|
||||
namespace event_camera_simulator {
|
||||
|
||||
DataProviderOnlineMoving3DCameraRig::DataProviderOnlineMoving3DCameraRig(ze::real_t simulation_minimum_framerate,
|
||||
ze::real_t simulation_imu_rate,
|
||||
int simulation_adaptive_sampling_method,
|
||||
ze::real_t simulation_adaptive_sampling_lambda)
|
||||
: DataProviderBase(DataProviderType::RendererOnline),
|
||||
simulation_minimum_framerate_(simulation_minimum_framerate),
|
||||
simulation_imu_rate_(simulation_imu_rate),
|
||||
simulation_adaptive_sampling_method_(simulation_adaptive_sampling_method),
|
||||
simulation_adaptive_sampling_lambda_(simulation_adaptive_sampling_lambda),
|
||||
dt_imu_(1./simulation_imu_rate),
|
||||
dt_frame_(1./simulation_minimum_framerate)
|
||||
{
|
||||
CHECK(simulation_adaptive_sampling_method == 0
|
||||
|| simulation_adaptive_sampling_method == 1);
|
||||
DataProviderOnlineMoving3DCameraRig::DataProviderOnlineMoving3DCameraRig(
|
||||
ze::real_t simulation_minimum_framerate,
|
||||
ze::real_t simulation_imu_rate,
|
||||
int simulation_adaptive_sampling_method,
|
||||
ze::real_t simulation_adaptive_sampling_lambda
|
||||
)
|
||||
: DataProviderBase(DataProviderType::RendererOnline),
|
||||
simulation_minimum_framerate_(simulation_minimum_framerate),
|
||||
simulation_imu_rate_(simulation_imu_rate),
|
||||
simulation_adaptive_sampling_method_(
|
||||
simulation_adaptive_sampling_method
|
||||
),
|
||||
simulation_adaptive_sampling_lambda_(
|
||||
simulation_adaptive_sampling_lambda
|
||||
),
|
||||
dt_imu_(1. / simulation_imu_rate),
|
||||
dt_frame_(1. / simulation_minimum_framerate) {
|
||||
CHECK(
|
||||
simulation_adaptive_sampling_method == 0
|
||||
|| simulation_adaptive_sampling_method == 1
|
||||
);
|
||||
|
||||
std::tie(trajectory_, trajectory_dyn_obj_) = loadTrajectorySimulatorFromGflags();
|
||||
imu_ = loadImuSimulatorFromGflags(trajectory_);
|
||||
camera_rig_ = ze::cameraRigFromGflags();
|
||||
std::tie(trajectory_, trajectory_dyn_obj_) =
|
||||
loadTrajectorySimulatorFromGflags();
|
||||
imu_ = loadImuSimulatorFromGflags(trajectory_);
|
||||
camera_rig_ = ze::cameraRigFromGflags();
|
||||
|
||||
// Compute Field-of-Views for information
|
||||
const ze::Camera::Ptr camera = camera_rig_->atShared(0);
|
||||
const int width = camera->width();
|
||||
const int height = camera->height();
|
||||
// Compute Field-of-Views for information
|
||||
const ze::Camera::Ptr camera = camera_rig_->atShared(0);
|
||||
const int width = camera->width();
|
||||
const int height = camera->height();
|
||||
|
||||
const ze::real_t horizontal_fov =
|
||||
180.0 / CV_PI *
|
||||
std::acos(camera->backProject(ze::Keypoint(0,height/2)).dot(
|
||||
camera->backProject(ze::Keypoint(width-1,height/2))));
|
||||
const ze::real_t horizontal_fov =
|
||||
180.0 / CV_PI
|
||||
* std::acos(camera->backProject(ze::Keypoint(0, height / 2))
|
||||
.dot(camera->backProject(
|
||||
ze::Keypoint(width - 1, height / 2)
|
||||
)));
|
||||
|
||||
const ze::real_t vertical_fov =
|
||||
180.0 / CV_PI *
|
||||
std::acos(camera->backProject(ze::Keypoint(width/2,0)).dot(
|
||||
camera->backProject(ze::Keypoint(width/2,height-1))));
|
||||
const ze::real_t vertical_fov =
|
||||
180.0 / CV_PI
|
||||
* std::acos(camera->backProject(ze::Keypoint(width / 2, 0))
|
||||
.dot(camera->backProject(
|
||||
ze::Keypoint(width / 2, height - 1)
|
||||
)));
|
||||
|
||||
const ze::real_t diagonal_fov =
|
||||
180.0 / CV_PI *
|
||||
std::acos(camera->backProject(ze::Keypoint(0,0)).dot(
|
||||
camera->backProject(ze::Keypoint(width-1,height-1))));
|
||||
const ze::real_t diagonal_fov =
|
||||
180.0 / CV_PI
|
||||
* std::acos(camera->backProject(ze::Keypoint(0, 0))
|
||||
.dot(camera->backProject(
|
||||
ze::Keypoint(width - 1, height - 1)
|
||||
)));
|
||||
|
||||
LOG(INFO) << "Horizontal FOV: " << horizontal_fov << " deg";
|
||||
LOG(INFO) << "Vertical FOV: " << vertical_fov << " deg";
|
||||
LOG(INFO) << "Diagonal FOV: " << diagonal_fov << " deg";
|
||||
LOG(INFO) << "Horizontal FOV: " << horizontal_fov << " deg";
|
||||
LOG(INFO) << "Vertical FOV: " << vertical_fov << " deg";
|
||||
LOG(INFO) << "Diagonal FOV: " << diagonal_fov << " deg";
|
||||
|
||||
for(size_t i=0; i<camera_rig_->size(); ++i)
|
||||
{
|
||||
renderers_.push_back(std::move(loadRendererFromGflags()));
|
||||
renderers_[i]->setCamera(camera_rig_->atShared(i));
|
||||
for (size_t i = 0; i < camera_rig_->size(); ++i) {
|
||||
renderers_.push_back(std::move(loadRendererFromGflags()));
|
||||
renderers_[i]->setCamera(camera_rig_->atShared(i));
|
||||
|
||||
optic_flow_helpers_.emplace_back(std::make_shared<OpticFlowHelper>(camera_rig_->atShared(i)));
|
||||
}
|
||||
optic_flow_helpers_.emplace_back(
|
||||
std::make_shared<OpticFlowHelper>(camera_rig_->atShared(i))
|
||||
);
|
||||
}
|
||||
|
||||
const size_t num_cameras = camera_rig_->size();
|
||||
const size_t num_cameras = camera_rig_->size();
|
||||
|
||||
sim_data_.groundtruth.T_W_Cs.resize(num_cameras);
|
||||
sim_data_.groundtruth.angular_velocities_.resize(num_cameras);
|
||||
sim_data_.groundtruth.linear_velocities_.resize(num_cameras);
|
||||
for(size_t i=0; i<num_cameras; ++i)
|
||||
{
|
||||
const cv::Size size = cv::Size(camera_rig_->at(i).width(),
|
||||
camera_rig_->at(i).height());
|
||||
sim_data_.groundtruth.T_W_Cs.resize(num_cameras);
|
||||
sim_data_.groundtruth.angular_velocities_.resize(num_cameras);
|
||||
sim_data_.groundtruth.linear_velocities_.resize(num_cameras);
|
||||
for (size_t i = 0; i < num_cameras; ++i) {
|
||||
const cv::Size size = cv::Size(
|
||||
camera_rig_->at(i).width(),
|
||||
camera_rig_->at(i).height()
|
||||
);
|
||||
|
||||
sim_data_.images.emplace_back(ImagePtr(new Image(size)));
|
||||
sim_data_.depthmaps.emplace_back(DepthmapPtr(new Depthmap(size)));
|
||||
sim_data_.optic_flows.emplace_back(OpticFlowPtr(new OpticFlow(size)));
|
||||
sim_data_.images.emplace_back(ImagePtr(new Image(size)));
|
||||
sim_data_.depthmaps.emplace_back(DepthmapPtr(new Depthmap(size)));
|
||||
sim_data_.optic_flows.emplace_back(OpticFlowPtr(new OpticFlow(size))
|
||||
);
|
||||
|
||||
sim_data_.images[i]->setTo(0);
|
||||
sim_data_.depthmaps[i]->setTo(0);
|
||||
sim_data_.optic_flows[i]->setTo(0);
|
||||
}
|
||||
sim_data_.images[i]->setTo(0);
|
||||
sim_data_.depthmaps[i]->setTo(0);
|
||||
sim_data_.optic_flows[i]->setTo(0);
|
||||
}
|
||||
|
||||
for(size_t i=0; i<trajectory_dyn_obj_.size(); i++)
|
||||
{
|
||||
sim_data_.groundtruth.T_W_OBJ_.push_back(Transformation());
|
||||
sim_data_.groundtruth.linear_velocity_obj_.push_back(LinearVelocity());
|
||||
sim_data_.groundtruth.angular_velocity_obj_.push_back(AngularVelocity());
|
||||
}
|
||||
for (size_t i = 0; i < trajectory_dyn_obj_.size(); i++) {
|
||||
sim_data_.groundtruth.T_W_OBJ_.push_back(Transformation());
|
||||
sim_data_.groundtruth.linear_velocity_obj_.push_back(LinearVelocity(
|
||||
));
|
||||
sim_data_.groundtruth.angular_velocity_obj_.push_back(
|
||||
AngularVelocity()
|
||||
);
|
||||
}
|
||||
|
||||
sim_data_.camera_rig = camera_rig_;
|
||||
t_ = trajectory_->start();
|
||||
sim_data_.camera_rig = camera_rig_;
|
||||
t_ = trajectory_->start();
|
||||
|
||||
// At the initial time, we sample everything (IMU + frames)
|
||||
sampleImu();
|
||||
sampleFrame();
|
||||
setAllUpdated();
|
||||
if(callback_)
|
||||
{
|
||||
callback_(sim_data_);
|
||||
}
|
||||
}
|
||||
|
||||
DataProviderOnlineMoving3DCameraRig::~DataProviderOnlineMoving3DCameraRig()
|
||||
{
|
||||
timers_data_provider_.saveToFile("/tmp", "data_provider_online_render.csv");
|
||||
}
|
||||
|
||||
size_t DataProviderOnlineMoving3DCameraRig::numCameras() const
|
||||
{
|
||||
if(camera_rig_)
|
||||
{
|
||||
return camera_rig_->size();
|
||||
}
|
||||
else
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
void DataProviderOnlineMoving3DCameraRig::updateGroundtruth()
|
||||
{
|
||||
const Transformation T_W_B = trajectory_->T_W_B(t_);
|
||||
sim_data_.groundtruth.T_W_B = T_W_B;
|
||||
|
||||
const AngularVelocity omega_B = trajectory_->angularVelocity_B(t_);
|
||||
const LinearVelocity v_B_W = trajectory_->velocity_W(t_);
|
||||
for(size_t i=0; i<camera_rig_->size(); ++i)
|
||||
{
|
||||
sim_data_.groundtruth.T_W_Cs[i] =
|
||||
sim_data_.groundtruth.T_W_B * camera_rig_->T_B_C(i);
|
||||
|
||||
const LinearVelocity v_W = v_B_W + T_W_B.getRotation().rotate(
|
||||
ze::skewSymmetric(omega_B) * camera_rig_->T_B_C(i).getPosition());
|
||||
|
||||
const AngularVelocity omega_C = camera_rig_->T_C_B(i).getRotation().rotate(omega_B);
|
||||
const LinearVelocity v_C = (camera_rig_->T_C_B(i) * T_W_B.inverse()).getRotation().rotate(v_W);
|
||||
|
||||
sim_data_.groundtruth.angular_velocities_[i] = omega_C;
|
||||
sim_data_.groundtruth.linear_velocities_[i] = v_C;
|
||||
}
|
||||
|
||||
// update poses of dynamic objects
|
||||
for (size_t i = 0; i < trajectory_dyn_obj_.size(); i++)
|
||||
{
|
||||
sim_data_.groundtruth.T_W_OBJ_[i] = trajectory_dyn_obj_[i]->T_W_B(t_);
|
||||
sim_data_.groundtruth.linear_velocity_obj_[i] = trajectory_dyn_obj_[i]->velocity_W(t_);
|
||||
sim_data_.groundtruth.angular_velocity_obj_[i] = sim_data_.groundtruth.T_W_OBJ_[i].getRotation().rotate(trajectory_dyn_obj_[i]->angularVelocity_B(t_));
|
||||
}
|
||||
}
|
||||
|
||||
void DataProviderOnlineMoving3DCameraRig::sampleImu()
|
||||
{
|
||||
// Sample new IMU (+ poses, twists, etc.) values,
|
||||
// Fill in the approriate data in sim_data
|
||||
auto t = timers_data_provider_[::TimerDataProvider::sample_imu].timeScope();
|
||||
|
||||
if(t_ > trajectory_->end())
|
||||
{
|
||||
return;
|
||||
}
|
||||
|
||||
updateGroundtruth();
|
||||
sim_data_.specific_force_corrupted = imu_->specificForceCorrupted(t_);
|
||||
sim_data_.angular_velocity_corrupted = imu_->angularVelocityCorrupted(t_);
|
||||
sim_data_.groundtruth.acc_bias = imu_->bias()->accelerometer(t_);
|
||||
sim_data_.groundtruth.gyr_bias = imu_->bias()->gyroscope(t_);
|
||||
|
||||
last_t_imu_ = t_;
|
||||
}
|
||||
|
||||
void DataProviderOnlineMoving3DCameraRig::sampleFrame()
|
||||
{
|
||||
// Sample (i.e. render) a new frame (+ depth map),
|
||||
// Fill in the appropriate data in sim_data
|
||||
// Compute the optic flow and compute the next latest sampling time in order
|
||||
// to guarantee that the displacement is bounded by simulation_max_displacement_successive_frames
|
||||
auto t = timers_data_provider_[::TimerDataProvider::sample_frame].timeScope();
|
||||
|
||||
if(t_ > trajectory_->end())
|
||||
{
|
||||
return;
|
||||
}
|
||||
|
||||
updateGroundtruth();
|
||||
|
||||
{
|
||||
auto t = timers_data_provider_[::TimerDataProvider::render].timeScope();
|
||||
|
||||
for(size_t i=0; i<camera_rig_->size(); ++i)
|
||||
{
|
||||
CHECK(renderers_[i]);
|
||||
|
||||
// if the renderer provides a function to compute the optic
|
||||
// flow (for example, the OpenGL renderer which implements
|
||||
// optic flow computation efficiently using a shader), use that.
|
||||
// otherwise, compute the optic flow ourselves using the renderer depthmap
|
||||
if(renderers_[i]->canComputeOpticFlow())
|
||||
{
|
||||
renderers_[i]->renderWithFlow(sim_data_.groundtruth.T_W_B * camera_rig_->T_B_C(i),
|
||||
sim_data_.groundtruth.linear_velocities_[i],
|
||||
sim_data_.groundtruth.angular_velocities_[i],
|
||||
sim_data_.groundtruth.T_W_OBJ_,
|
||||
sim_data_.groundtruth.linear_velocity_obj_,
|
||||
sim_data_.groundtruth.angular_velocity_obj_,
|
||||
sim_data_.images[i],
|
||||
sim_data_.depthmaps[i],
|
||||
sim_data_.optic_flows[i]);
|
||||
}
|
||||
else
|
||||
{
|
||||
renderers_[i]->render(sim_data_.groundtruth.T_W_B * camera_rig_->T_B_C(i),
|
||||
sim_data_.groundtruth.T_W_OBJ_,
|
||||
sim_data_.images[i],
|
||||
sim_data_.depthmaps[i]);
|
||||
}
|
||||
|
||||
// Optionally blur the rendered images slightly
|
||||
if(FLAGS_simulation_post_gaussian_blur_sigma > 0)
|
||||
{
|
||||
gaussianBlur(sim_data_.images[i], FLAGS_simulation_post_gaussian_blur_sigma);
|
||||
}
|
||||
// At the initial time, we sample everything (IMU + frames)
|
||||
sampleImu();
|
||||
sampleFrame();
|
||||
setAllUpdated();
|
||||
if (callback_)
|
||||
callback_(sim_data_);
|
||||
}
|
||||
}
|
||||
|
||||
{
|
||||
auto t = timers_data_provider_[::TimerDataProvider::optic_flow].timeScope();
|
||||
for(size_t i=0; i<camera_rig_->size(); ++i)
|
||||
{
|
||||
CHECK(optic_flow_helpers_[i]);
|
||||
if(!renderers_[i]->canComputeOpticFlow())
|
||||
{
|
||||
optic_flow_helpers_[i]->computeFromDepthAndTwist(sim_data_.groundtruth.angular_velocities_[i],
|
||||
sim_data_.groundtruth.linear_velocities_[i],
|
||||
sim_data_.depthmaps[i], sim_data_.optic_flows[i]);
|
||||
|
||||
}
|
||||
DataProviderOnlineMoving3DCameraRig::~DataProviderOnlineMoving3DCameraRig(
|
||||
) {
|
||||
timers_data_provider_.saveToFile(
|
||||
"/tmp",
|
||||
"data_provider_online_render.csv"
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
// Adaptive sampling scheme based on predicted brightness change
|
||||
if(simulation_adaptive_sampling_method_ == 0)
|
||||
{
|
||||
// Predict brightness change based on image gradient and optic flow
|
||||
std::vector<FloatType> max_dLdts;
|
||||
for(size_t i=0; i<camera_rig_->size(); ++i)
|
||||
{
|
||||
max_dLdts.push_back(
|
||||
maxPredictedAbsBrightnessChange(sim_data_.images[i],
|
||||
sim_data_.optic_flows[i]));
|
||||
size_t DataProviderOnlineMoving3DCameraRig::numCameras() const {
|
||||
if (camera_rig_)
|
||||
return camera_rig_->size();
|
||||
else
|
||||
return 0;
|
||||
}
|
||||
const FloatType max_dLdt = *std::max_element(max_dLdts.begin(),
|
||||
max_dLdts.end());
|
||||
|
||||
VLOG(1) << "max(|dLdt|) = " << max_dLdt << " logDN/s";
|
||||
void DataProviderOnlineMoving3DCameraRig::updateGroundtruth() {
|
||||
const Transformation T_W_B = trajectory_->T_W_B(t_);
|
||||
sim_data_.groundtruth.T_W_B = T_W_B;
|
||||
|
||||
// Compute next sampling time
|
||||
// t_{k+1} = t_k + delta_t where
|
||||
// delta_t = lambda / max(|dL/dt|)
|
||||
const ze::real_t delta_t = simulation_adaptive_sampling_lambda_ / max_dLdt;
|
||||
VLOG(1) << "deltaT = " << 1000.0 * delta_t << " ms";
|
||||
const AngularVelocity omega_B = trajectory_->angularVelocity_B(t_);
|
||||
const LinearVelocity v_B_W = trajectory_->velocity_W(t_);
|
||||
for (size_t i = 0; i < camera_rig_->size(); ++i) {
|
||||
sim_data_.groundtruth.T_W_Cs[i] =
|
||||
sim_data_.groundtruth.T_W_B * camera_rig_->T_B_C(i);
|
||||
|
||||
next_t_flow_ = t_ + delta_t;
|
||||
}
|
||||
const LinearVelocity v_W = v_B_W
|
||||
+ T_W_B.getRotation().rotate(
|
||||
ze::skewSymmetric(omega_B)
|
||||
* camera_rig_->T_B_C(i).getPosition()
|
||||
);
|
||||
|
||||
// Adaptive sampling scheme based on optic flow
|
||||
else {
|
||||
std::vector<FloatType> max_flow_magnitudes;
|
||||
for(size_t i=0; i<camera_rig_->size(); ++i)
|
||||
{
|
||||
max_flow_magnitudes.push_back(maxMagnitudeOpticFlow(sim_data_.optic_flows[i]));
|
||||
const AngularVelocity omega_C =
|
||||
camera_rig_->T_C_B(i).getRotation().rotate(omega_B);
|
||||
const LinearVelocity v_C = (camera_rig_->T_C_B(i) * T_W_B.inverse())
|
||||
.getRotation()
|
||||
.rotate(v_W);
|
||||
|
||||
sim_data_.groundtruth.angular_velocities_[i] = omega_C;
|
||||
sim_data_.groundtruth.linear_velocities_[i] = v_C;
|
||||
}
|
||||
|
||||
// update poses of dynamic objects
|
||||
for (size_t i = 0; i < trajectory_dyn_obj_.size(); i++) {
|
||||
sim_data_.groundtruth.T_W_OBJ_[i] =
|
||||
trajectory_dyn_obj_[i]->T_W_B(t_);
|
||||
sim_data_.groundtruth.linear_velocity_obj_[i] =
|
||||
trajectory_dyn_obj_[i]->velocity_W(t_);
|
||||
sim_data_.groundtruth.angular_velocity_obj_[i] =
|
||||
sim_data_.groundtruth.T_W_OBJ_[i].getRotation().rotate(
|
||||
trajectory_dyn_obj_[i]->angularVelocity_B(t_)
|
||||
);
|
||||
}
|
||||
}
|
||||
const FloatType max_flow_magnitude = *std::max_element(max_flow_magnitudes.begin(), max_flow_magnitudes.end());
|
||||
|
||||
VLOG(1) << "max(||optic_flow||) = " << max_flow_magnitude << " px/s";
|
||||
void DataProviderOnlineMoving3DCameraRig::sampleImu() {
|
||||
// Sample new IMU (+ poses, twists, etc.) values,
|
||||
// Fill in the approriate data in sim_data
|
||||
auto t =
|
||||
timers_data_provider_[::TimerDataProvider::sample_imu].timeScope();
|
||||
|
||||
// Compute next sampling time
|
||||
// t_{k+1} = t_k + delta_t where
|
||||
// delta_t = lambda / max(||optic_flow||)
|
||||
const ze::real_t delta_t = simulation_adaptive_sampling_lambda_ / max_flow_magnitude;
|
||||
VLOG(1) << "deltaT = " << 1000.0 * delta_t << " ms";
|
||||
if (t_ > trajectory_->end())
|
||||
return;
|
||||
|
||||
next_t_flow_ = t_ + delta_t;
|
||||
}
|
||||
updateGroundtruth();
|
||||
sim_data_.specific_force_corrupted = imu_->specificForceCorrupted(t_);
|
||||
sim_data_.angular_velocity_corrupted =
|
||||
imu_->angularVelocityCorrupted(t_);
|
||||
sim_data_.groundtruth.acc_bias = imu_->bias()->accelerometer(t_);
|
||||
sim_data_.groundtruth.gyr_bias = imu_->bias()->gyroscope(t_);
|
||||
|
||||
last_t_frame_ = t_;
|
||||
}
|
||||
last_t_imu_ = t_;
|
||||
}
|
||||
|
||||
void DataProviderOnlineMoving3DCameraRig::setImuUpdated()
|
||||
{
|
||||
// Set all the IMU-related flags to true, and all the frame-related flags to false
|
||||
sim_data_.imu_updated = true;
|
||||
sim_data_.twists_updated = true;
|
||||
sim_data_.poses_updated = true;
|
||||
sim_data_.images_updated = false;
|
||||
sim_data_.depthmaps_updated = false;
|
||||
sim_data_.optic_flows_updated = false;
|
||||
}
|
||||
void DataProviderOnlineMoving3DCameraRig::sampleFrame() {
|
||||
// Sample (i.e. render) a new frame (+ depth map),
|
||||
// Fill in the appropriate data in sim_data
|
||||
// Compute the optic flow and compute the next latest sampling time in
|
||||
// order to guarantee that the displacement is bounded by
|
||||
// simulation_max_displacement_successive_frames
|
||||
auto t =
|
||||
timers_data_provider_[::TimerDataProvider::sample_frame].timeScope(
|
||||
);
|
||||
|
||||
void DataProviderOnlineMoving3DCameraRig::setFrameUpdated()
|
||||
{
|
||||
// Set all the frame-related flags to true, and all the IMU-related flags to false
|
||||
sim_data_.imu_updated = false;
|
||||
sim_data_.twists_updated = true;
|
||||
sim_data_.poses_updated = true;
|
||||
sim_data_.images_updated = true;
|
||||
sim_data_.depthmaps_updated = true;
|
||||
sim_data_.optic_flows_updated = true;
|
||||
}
|
||||
if (t_ > trajectory_->end())
|
||||
return;
|
||||
|
||||
void DataProviderOnlineMoving3DCameraRig::setAllUpdated()
|
||||
{
|
||||
// Set all the flags to true to indicated everything has been changed
|
||||
sim_data_.imu_updated = true;
|
||||
sim_data_.twists_updated = true;
|
||||
sim_data_.poses_updated = true;
|
||||
sim_data_.images_updated = true;
|
||||
sim_data_.depthmaps_updated = true;
|
||||
sim_data_.optic_flows_updated = true;
|
||||
}
|
||||
updateGroundtruth();
|
||||
|
||||
bool DataProviderOnlineMoving3DCameraRig::spinOnce()
|
||||
{
|
||||
/* At what time do we need to sample "something" (and what "something"?)
|
||||
We choose the next sampling time by considering the following constraints:
|
||||
{
|
||||
auto t =
|
||||
timers_data_provider_[::TimerDataProvider::render].timeScope();
|
||||
|
||||
1. The IMU sampling rate must be constant (typically, from 200 Hz to 1 kHz)
|
||||
2. The frame sampling rate must be greater than a minimum value (typically, from 20 Hz to 100 Hz)
|
||||
3. The pixel displacement between two successive frames must be lower than a threshold.
|
||||
for (size_t i = 0; i < camera_rig_->size(); ++i) {
|
||||
CHECK(renderers_[i]);
|
||||
|
||||
* If the next sample needs to be an IMU sample, we just sample a new IMU value, without regenerating a frame,
|
||||
and transmit only the new IMU (+ poses, twists, IMU bias) to the publisher by setting the approriate "data_changed" flags in the
|
||||
sim_data structure.
|
||||
// if the renderer provides a function to compute the optic
|
||||
// flow (for example, the OpenGL renderer which implements
|
||||
// optic flow computation efficiently using a shader), use that.
|
||||
// otherwise, compute the optic flow ourselves using the
|
||||
// renderer depthmap
|
||||
if (renderers_[i]->canComputeOpticFlow()) {
|
||||
renderers_[i]->renderWithFlow(
|
||||
sim_data_.groundtruth.T_W_B * camera_rig_->T_B_C(i),
|
||||
sim_data_.groundtruth.linear_velocities_[i],
|
||||
sim_data_.groundtruth.angular_velocities_[i],
|
||||
sim_data_.groundtruth.T_W_OBJ_,
|
||||
sim_data_.groundtruth.linear_velocity_obj_,
|
||||
sim_data_.groundtruth.angular_velocity_obj_,
|
||||
sim_data_.images[i],
|
||||
sim_data_.depthmaps[i],
|
||||
sim_data_.optic_flows[i]
|
||||
);
|
||||
} else {
|
||||
renderers_[i]->render(
|
||||
sim_data_.groundtruth.T_W_B * camera_rig_->T_B_C(i),
|
||||
sim_data_.groundtruth.T_W_OBJ_,
|
||||
sim_data_.images[i],
|
||||
sim_data_.depthmaps[i]
|
||||
);
|
||||
}
|
||||
|
||||
* If the next sample needs to be a frame sample, we render a new frame (+ depth map + optic flow), but not a new IMU value.
|
||||
This can happen either because
|
||||
(i) a new frame must be rendered in order to guarantee that the displacement between frames is bounded, or
|
||||
(ii) the frame rate should be higher than a minimum (used-defined) value.
|
||||
// Optionally blur the rendered images slightly
|
||||
if (FLAGS_simulation_post_gaussian_blur_sigma > 0) {
|
||||
gaussianBlur(
|
||||
sim_data_.images[i],
|
||||
FLAGS_simulation_post_gaussian_blur_sigma
|
||||
);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
At the beginning of time (t_ = trajectory_->start()), we sample everything (IMU + frame).
|
||||
*/
|
||||
{
|
||||
auto t = timers_data_provider_[::TimerDataProvider::optic_flow]
|
||||
.timeScope();
|
||||
for (size_t i = 0; i < camera_rig_->size(); ++i) {
|
||||
CHECK(optic_flow_helpers_[i]);
|
||||
if (!renderers_[i]->canComputeOpticFlow()) {
|
||||
optic_flow_helpers_[i]->computeFromDepthAndTwist(
|
||||
sim_data_.groundtruth.angular_velocities_[i],
|
||||
sim_data_.groundtruth.linear_velocities_[i],
|
||||
sim_data_.depthmaps[i],
|
||||
sim_data_.optic_flows[i]
|
||||
);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
const ze::real_t next_t_imu = last_t_imu_ + dt_imu_;
|
||||
const ze::real_t next_t_frame = last_t_frame_ + dt_frame_;
|
||||
// Adaptive sampling scheme based on predicted brightness change
|
||||
if (simulation_adaptive_sampling_method_ == 0) {
|
||||
// Predict brightness change based on image gradient and optic flow
|
||||
std::vector<FloatType> max_dLdts;
|
||||
for (size_t i = 0; i < camera_rig_->size(); ++i) {
|
||||
max_dLdts.push_back(maxPredictedAbsBrightnessChange(
|
||||
sim_data_.images[i],
|
||||
sim_data_.optic_flows[i]
|
||||
));
|
||||
}
|
||||
const FloatType max_dLdt =
|
||||
*std::max_element(max_dLdts.begin(), max_dLdts.end());
|
||||
|
||||
VLOG(2) << "t = " << t_;
|
||||
VLOG(2) << "next_t_imu = " << next_t_imu;
|
||||
VLOG(2) << "next_t_frame = " << next_t_frame;
|
||||
VLOG(2) << "next_t_flow = " << next_t_flow_;
|
||||
VLOG(1) << "max(|dLdt|) = " << max_dLdt << " logDN/s";
|
||||
|
||||
if(next_t_imu < next_t_frame && next_t_imu < next_t_flow_)
|
||||
{
|
||||
VLOG(2) << "Sample IMU";
|
||||
t_ = next_t_imu;
|
||||
sampleImu();
|
||||
setImuUpdated();
|
||||
}
|
||||
else if(next_t_flow_ < next_t_imu && next_t_flow_ < next_t_frame)
|
||||
{
|
||||
VLOG(2) << "Sample frame (because of optic flow)";
|
||||
t_ = next_t_flow_;
|
||||
sampleFrame();
|
||||
setFrameUpdated();
|
||||
}
|
||||
else if(next_t_frame < next_t_imu && next_t_frame < next_t_flow_)
|
||||
{
|
||||
VLOG(2) << "Sample frame (because of minimum framerate)";
|
||||
t_ = next_t_frame;
|
||||
sampleFrame();
|
||||
setFrameUpdated();
|
||||
}
|
||||
else
|
||||
{
|
||||
VLOG(2) << "Sample IMU and frame";
|
||||
t_ = next_t_frame;
|
||||
// In that case, we sample everything
|
||||
sampleImu();
|
||||
sampleFrame();
|
||||
setAllUpdated();
|
||||
}
|
||||
// Compute next sampling time
|
||||
// t_{k+1} = t_k + delta_t where
|
||||
// delta_t = lambda / max(|dL/dt|)
|
||||
const ze::real_t delta_t =
|
||||
simulation_adaptive_sampling_lambda_ / max_dLdt;
|
||||
VLOG(1) << "deltaT = " << 1000.0 * delta_t << " ms";
|
||||
|
||||
if(t_ > trajectory_->end())
|
||||
{
|
||||
running_ = false;
|
||||
return false;
|
||||
}
|
||||
next_t_flow_ = t_ + delta_t;
|
||||
}
|
||||
|
||||
if(callback_)
|
||||
{
|
||||
sim_data_.timestamp = static_cast<Time>(ze::secToNanosec(t_));
|
||||
callback_(sim_data_);
|
||||
}
|
||||
else
|
||||
{
|
||||
LOG_FIRST_N(WARNING, 1) << "No camera callback registered but measurements available.";
|
||||
}
|
||||
return true;
|
||||
}
|
||||
// Adaptive sampling scheme based on optic flow
|
||||
else {
|
||||
std::vector<FloatType> max_flow_magnitudes;
|
||||
for (size_t i = 0; i < camera_rig_->size(); ++i) {
|
||||
max_flow_magnitudes.push_back(
|
||||
maxMagnitudeOpticFlow(sim_data_.optic_flows[i])
|
||||
);
|
||||
}
|
||||
const FloatType max_flow_magnitude = *std::max_element(
|
||||
max_flow_magnitudes.begin(),
|
||||
max_flow_magnitudes.end()
|
||||
);
|
||||
|
||||
bool DataProviderOnlineMoving3DCameraRig::ok() const
|
||||
{
|
||||
if (!running_)
|
||||
{
|
||||
VLOG(1) << "Data Provider was paused/terminated.";
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
VLOG(1) << "max(||optic_flow||) = " << max_flow_magnitude
|
||||
<< " px/s";
|
||||
|
||||
// Compute next sampling time
|
||||
// t_{k+1} = t_k + delta_t where
|
||||
// delta_t = lambda / max(||optic_flow||)
|
||||
const ze::real_t delta_t =
|
||||
simulation_adaptive_sampling_lambda_ / max_flow_magnitude;
|
||||
VLOG(1) << "deltaT = " << 1000.0 * delta_t << " ms";
|
||||
|
||||
next_t_flow_ = t_ + delta_t;
|
||||
}
|
||||
|
||||
last_t_frame_ = t_;
|
||||
}
|
||||
|
||||
void DataProviderOnlineMoving3DCameraRig::setImuUpdated() {
|
||||
// Set all the IMU-related flags to true, and all the frame-related
|
||||
// flags to false
|
||||
sim_data_.imu_updated = true;
|
||||
sim_data_.twists_updated = true;
|
||||
sim_data_.poses_updated = true;
|
||||
sim_data_.images_updated = false;
|
||||
sim_data_.depthmaps_updated = false;
|
||||
sim_data_.optic_flows_updated = false;
|
||||
}
|
||||
|
||||
void DataProviderOnlineMoving3DCameraRig::setFrameUpdated() {
|
||||
// Set all the frame-related flags to true, and all the IMU-related
|
||||
// flags to false
|
||||
sim_data_.imu_updated = false;
|
||||
sim_data_.twists_updated = true;
|
||||
sim_data_.poses_updated = true;
|
||||
sim_data_.images_updated = true;
|
||||
sim_data_.depthmaps_updated = true;
|
||||
sim_data_.optic_flows_updated = true;
|
||||
}
|
||||
|
||||
void DataProviderOnlineMoving3DCameraRig::setAllUpdated() {
|
||||
// Set all the flags to true to indicated everything has been changed
|
||||
sim_data_.imu_updated = true;
|
||||
sim_data_.twists_updated = true;
|
||||
sim_data_.poses_updated = true;
|
||||
sim_data_.images_updated = true;
|
||||
sim_data_.depthmaps_updated = true;
|
||||
sim_data_.optic_flows_updated = true;
|
||||
}
|
||||
|
||||
bool DataProviderOnlineMoving3DCameraRig::spinOnce() {
|
||||
/* At what time do we need to sample "something" (and what "something"?)
|
||||
We choose the next sampling time by considering the following
|
||||
constraints:
|
||||
|
||||
1. The IMU sampling rate must be constant (typically, from 200 Hz to
|
||||
1 kHz)
|
||||
2. The frame sampling rate must be greater than a minimum value
|
||||
(typically, from 20 Hz to 100 Hz)
|
||||
3. The pixel displacement between two successive frames must be lower
|
||||
than a threshold.
|
||||
|
||||
* If the next sample needs to be an IMU sample, we just sample a new
|
||||
IMU value, without regenerating a frame, and transmit only the new
|
||||
IMU (+ poses, twists, IMU bias) to the publisher by setting the
|
||||
approriate "data_changed" flags in the sim_data structure.
|
||||
|
||||
* If the next sample needs to be a frame sample, we render a new
|
||||
frame (+ depth map + optic flow), but not a new IMU value. This can
|
||||
happen either because (i) a new frame must be rendered in order to
|
||||
guarantee that the displacement between frames is bounded, or (ii)
|
||||
the frame rate should be higher than a minimum (used-defined) value.
|
||||
|
||||
At the beginning of time (t_ = trajectory_->start()), we sample
|
||||
everything (IMU + frame).
|
||||
*/
|
||||
|
||||
const ze::real_t next_t_imu = last_t_imu_ + dt_imu_;
|
||||
const ze::real_t next_t_frame = last_t_frame_ + dt_frame_;
|
||||
|
||||
VLOG(2) << "t = " << t_;
|
||||
VLOG(2) << "next_t_imu = " << next_t_imu;
|
||||
VLOG(2) << "next_t_frame = " << next_t_frame;
|
||||
VLOG(2) << "next_t_flow = " << next_t_flow_;
|
||||
|
||||
if (next_t_imu < next_t_frame && next_t_imu < next_t_flow_) {
|
||||
VLOG(2) << "Sample IMU";
|
||||
t_ = next_t_imu;
|
||||
sampleImu();
|
||||
setImuUpdated();
|
||||
} else if (next_t_flow_ < next_t_imu && next_t_flow_ < next_t_frame) {
|
||||
VLOG(2) << "Sample frame (because of optic flow)";
|
||||
t_ = next_t_flow_;
|
||||
sampleFrame();
|
||||
setFrameUpdated();
|
||||
} else if (next_t_frame < next_t_imu && next_t_frame < next_t_flow_) {
|
||||
VLOG(2) << "Sample frame (because of minimum framerate)";
|
||||
t_ = next_t_frame;
|
||||
sampleFrame();
|
||||
setFrameUpdated();
|
||||
} else {
|
||||
VLOG(2) << "Sample IMU and frame";
|
||||
t_ = next_t_frame;
|
||||
// In that case, we sample everything
|
||||
sampleImu();
|
||||
sampleFrame();
|
||||
setAllUpdated();
|
||||
}
|
||||
|
||||
if (t_ > trajectory_->end()) {
|
||||
running_ = false;
|
||||
return false;
|
||||
}
|
||||
|
||||
if (callback_) {
|
||||
sim_data_.timestamp = static_cast<Time>(ze::secToNanosec(t_));
|
||||
callback_(sim_data_);
|
||||
} else {
|
||||
LOG_FIRST_N(WARNING, 1)
|
||||
<< "No camera callback registered but measurements available.";
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
bool DataProviderOnlineMoving3DCameraRig::ok() const {
|
||||
if (!running_) {
|
||||
VLOG(1) << "Data Provider was paused/terminated.";
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
} // namespace event_camera_simulator
|
||||
|
@ -1,177 +1,177 @@
|
||||
#include <esim/data_provider/data_provider_online_simple.hpp>
|
||||
#include <ze/common/time_conversions.hpp>
|
||||
#include <esim/data_provider/renderer_factory.hpp>
|
||||
#include <esim/common/utils.hpp>
|
||||
#include <esim/data_provider/data_provider_online_simple.hpp>
|
||||
#include <esim/data_provider/renderer_factory.hpp>
|
||||
#include <ze/common/time_conversions.hpp>
|
||||
|
||||
DECLARE_double(simulation_post_gaussian_blur_sigma);
|
||||
|
||||
namespace event_camera_simulator {
|
||||
|
||||
DataProviderOnlineSimple::DataProviderOnlineSimple(ze::real_t simulation_minimum_framerate,
|
||||
int simulation_adaptive_sampling_method,
|
||||
ze::real_t simulation_adaptive_sampling_lambda)
|
||||
: DataProviderBase(DataProviderType::RendererOnline),
|
||||
simulation_minimum_framerate_(simulation_minimum_framerate),
|
||||
simulation_adaptive_sampling_method_(simulation_adaptive_sampling_method),
|
||||
simulation_adaptive_sampling_lambda_(simulation_adaptive_sampling_lambda),
|
||||
dt_frame_(1./simulation_minimum_framerate)
|
||||
{
|
||||
CHECK(simulation_adaptive_sampling_method == 0
|
||||
|| simulation_adaptive_sampling_method == 1);
|
||||
DataProviderOnlineSimple::DataProviderOnlineSimple(
|
||||
ze::real_t simulation_minimum_framerate,
|
||||
int simulation_adaptive_sampling_method,
|
||||
ze::real_t simulation_adaptive_sampling_lambda
|
||||
)
|
||||
: DataProviderBase(DataProviderType::RendererOnline),
|
||||
simulation_minimum_framerate_(simulation_minimum_framerate),
|
||||
simulation_adaptive_sampling_method_(
|
||||
simulation_adaptive_sampling_method
|
||||
),
|
||||
simulation_adaptive_sampling_lambda_(
|
||||
simulation_adaptive_sampling_lambda
|
||||
),
|
||||
dt_frame_(1. / simulation_minimum_framerate) {
|
||||
CHECK(
|
||||
simulation_adaptive_sampling_method == 0
|
||||
|| simulation_adaptive_sampling_method == 1
|
||||
);
|
||||
|
||||
renderer_ = loadSimpleRendererFromGflags();
|
||||
renderer_ = loadSimpleRendererFromGflags();
|
||||
|
||||
const size_t num_cameras = 1u;
|
||||
const size_t num_cameras = 1u;
|
||||
|
||||
for(size_t i=0; i<num_cameras; ++i)
|
||||
{
|
||||
const cv::Size size = cv::Size(renderer_->getWidth(),
|
||||
renderer_->getHeight());
|
||||
for (size_t i = 0; i < num_cameras; ++i) {
|
||||
const cv::Size size =
|
||||
cv::Size(renderer_->getWidth(), renderer_->getHeight());
|
||||
|
||||
sim_data_.images.emplace_back(ImagePtr(new Image(size)));
|
||||
sim_data_.optic_flows.emplace_back(OpticFlowPtr(new OpticFlow(size)));
|
||||
sim_data_.images.emplace_back(ImagePtr(new Image(size)));
|
||||
sim_data_.optic_flows.emplace_back(OpticFlowPtr(new OpticFlow(size))
|
||||
);
|
||||
|
||||
sim_data_.images[i]->setTo(0);
|
||||
sim_data_.optic_flows[i]->setTo(0);
|
||||
}
|
||||
sim_data_.images[i]->setTo(0);
|
||||
sim_data_.optic_flows[i]->setTo(0);
|
||||
}
|
||||
|
||||
// At the initial time, we sample a frame + optic flow map
|
||||
t_ = 0.;
|
||||
sampleFrame();
|
||||
setFrameUpdated();
|
||||
if(callback_)
|
||||
{
|
||||
callback_(sim_data_);
|
||||
}
|
||||
}
|
||||
// At the initial time, we sample a frame + optic flow map
|
||||
t_ = 0.;
|
||||
sampleFrame();
|
||||
setFrameUpdated();
|
||||
if (callback_)
|
||||
callback_(sim_data_);
|
||||
}
|
||||
|
||||
DataProviderOnlineSimple::~DataProviderOnlineSimple()
|
||||
{
|
||||
}
|
||||
DataProviderOnlineSimple::~DataProviderOnlineSimple() {}
|
||||
|
||||
size_t DataProviderOnlineSimple::numCameras() const
|
||||
{
|
||||
return 1u;
|
||||
}
|
||||
size_t DataProviderOnlineSimple::numCameras() const {
|
||||
return 1u;
|
||||
}
|
||||
|
||||
bool DataProviderOnlineSimple::sampleFrame()
|
||||
{
|
||||
// Sample (i.e. render) a new frame (+ optic flow map),
|
||||
// Fill in the appropriate data in sim_data
|
||||
// Compute the optic flow and compute the next latest sampling time in order
|
||||
// to guarantee that the displacement is bounded by simulation_max_displacement_successive_frames
|
||||
CHECK(renderer_);
|
||||
bool is_finished = renderer_->render(ze::secToNanosec(t_),
|
||||
sim_data_.images[0],
|
||||
sim_data_.optic_flows[0]);
|
||||
bool DataProviderOnlineSimple::sampleFrame() {
|
||||
// Sample (i.e. render) a new frame (+ optic flow map),
|
||||
// Fill in the appropriate data in sim_data
|
||||
// Compute the optic flow and compute the next latest sampling time in
|
||||
// order to guarantee that the displacement is bounded by
|
||||
// simulation_max_displacement_successive_frames
|
||||
CHECK(renderer_);
|
||||
bool is_finished = renderer_->render(
|
||||
ze::secToNanosec(t_),
|
||||
sim_data_.images[0],
|
||||
sim_data_.optic_flows[0]
|
||||
);
|
||||
|
||||
if(is_finished)
|
||||
{
|
||||
return true;
|
||||
}
|
||||
if (is_finished)
|
||||
return true;
|
||||
|
||||
// Optionally blur the rendered images slightly
|
||||
if(FLAGS_simulation_post_gaussian_blur_sigma > 0)
|
||||
{
|
||||
gaussianBlur(sim_data_.images[0], FLAGS_simulation_post_gaussian_blur_sigma);
|
||||
}
|
||||
// Optionally blur the rendered images slightly
|
||||
if (FLAGS_simulation_post_gaussian_blur_sigma > 0) {
|
||||
gaussianBlur(
|
||||
sim_data_.images[0],
|
||||
FLAGS_simulation_post_gaussian_blur_sigma
|
||||
);
|
||||
}
|
||||
|
||||
// Adaptive sampling scheme based on predicted brightness change
|
||||
if(simulation_adaptive_sampling_method_ == 0)
|
||||
{
|
||||
// Predict brightness change based on image gradient and optic flow
|
||||
const FloatType max_dLdt = maxPredictedAbsBrightnessChange(sim_data_.images[0],
|
||||
sim_data_.optic_flows[0]);
|
||||
// Adaptive sampling scheme based on predicted brightness change
|
||||
if (simulation_adaptive_sampling_method_ == 0) {
|
||||
// Predict brightness change based on image gradient and optic flow
|
||||
const FloatType max_dLdt = maxPredictedAbsBrightnessChange(
|
||||
sim_data_.images[0],
|
||||
sim_data_.optic_flows[0]
|
||||
);
|
||||
|
||||
VLOG(1) << "max(|dLdt|) = " << max_dLdt << " logDN/s";
|
||||
VLOG(1) << "max(|dLdt|) = " << max_dLdt << " logDN/s";
|
||||
|
||||
// Compute next sampling time
|
||||
// t_{k+1} = t_k + delta_t where
|
||||
// delta_t = lambda / max(|dL/dt|)
|
||||
const ze::real_t delta_t = simulation_adaptive_sampling_lambda_ / max_dLdt;
|
||||
VLOG(1) << "deltaT = " << 1000.0 * delta_t << " ms";
|
||||
// Compute next sampling time
|
||||
// t_{k+1} = t_k + delta_t where
|
||||
// delta_t = lambda / max(|dL/dt|)
|
||||
const ze::real_t delta_t =
|
||||
simulation_adaptive_sampling_lambda_ / max_dLdt;
|
||||
VLOG(1) << "deltaT = " << 1000.0 * delta_t << " ms";
|
||||
|
||||
next_t_adaptive_ = t_ + delta_t;
|
||||
}
|
||||
next_t_adaptive_ = t_ + delta_t;
|
||||
}
|
||||
|
||||
// Adaptive sampling scheme based on optic flow
|
||||
else {
|
||||
const FloatType max_flow_magnitude = maxMagnitudeOpticFlow(sim_data_.optic_flows[0]);
|
||||
// Adaptive sampling scheme based on optic flow
|
||||
else {
|
||||
const FloatType max_flow_magnitude =
|
||||
maxMagnitudeOpticFlow(sim_data_.optic_flows[0]);
|
||||
|
||||
VLOG(1) << "max(||optic_flow||) = " << max_flow_magnitude << " px/s";
|
||||
VLOG(1) << "max(||optic_flow||) = " << max_flow_magnitude
|
||||
<< " px/s";
|
||||
|
||||
// Compute next sampling time
|
||||
// t_{k+1} = t_k + delta_t where
|
||||
// delta_t = lambda / max(||optic_flow||)
|
||||
const ze::real_t delta_t = simulation_adaptive_sampling_lambda_ / max_flow_magnitude;
|
||||
VLOG(1) << "deltaT = " << 1000.0 * delta_t << " ms";
|
||||
// Compute next sampling time
|
||||
// t_{k+1} = t_k + delta_t where
|
||||
// delta_t = lambda / max(||optic_flow||)
|
||||
const ze::real_t delta_t =
|
||||
simulation_adaptive_sampling_lambda_ / max_flow_magnitude;
|
||||
VLOG(1) << "deltaT = " << 1000.0 * delta_t << " ms";
|
||||
|
||||
next_t_adaptive_ = t_ + delta_t;
|
||||
}
|
||||
next_t_adaptive_ = t_ + delta_t;
|
||||
}
|
||||
|
||||
last_t_frame_ = t_;
|
||||
last_t_frame_ = t_;
|
||||
|
||||
return false;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
void DataProviderOnlineSimple::setFrameUpdated()
|
||||
{
|
||||
// Set all the frame-related flags to true, and all the IMU-related flags to false
|
||||
sim_data_.imu_updated = false;
|
||||
sim_data_.twists_updated = false;
|
||||
sim_data_.poses_updated = false;
|
||||
sim_data_.images_updated = true;
|
||||
sim_data_.depthmaps_updated = false;
|
||||
sim_data_.optic_flows_updated = true;
|
||||
}
|
||||
void DataProviderOnlineSimple::setFrameUpdated() {
|
||||
// Set all the frame-related flags to true, and all the IMU-related
|
||||
// flags to false
|
||||
sim_data_.imu_updated = false;
|
||||
sim_data_.twists_updated = false;
|
||||
sim_data_.poses_updated = false;
|
||||
sim_data_.images_updated = true;
|
||||
sim_data_.depthmaps_updated = false;
|
||||
sim_data_.optic_flows_updated = true;
|
||||
}
|
||||
|
||||
bool DataProviderOnlineSimple::spinOnce()
|
||||
{
|
||||
const ze::real_t next_t_frame = last_t_frame_ + dt_frame_;
|
||||
bool DataProviderOnlineSimple::spinOnce() {
|
||||
const ze::real_t next_t_frame = last_t_frame_ + dt_frame_;
|
||||
|
||||
VLOG(2) << "t = " << t_;
|
||||
VLOG(2) << "next_t_frame = " << next_t_frame;
|
||||
VLOG(2) << "next_t_flow = " << next_t_adaptive_;
|
||||
VLOG(2) << "t = " << t_;
|
||||
VLOG(2) << "next_t_frame = " << next_t_frame;
|
||||
VLOG(2) << "next_t_flow = " << next_t_adaptive_;
|
||||
|
||||
if(next_t_adaptive_ < next_t_frame)
|
||||
{
|
||||
VLOG(2) << "Sample frame (because of optic flow)";
|
||||
t_ = next_t_adaptive_;
|
||||
}
|
||||
else
|
||||
{
|
||||
VLOG(2) << "Sample frame (because of minimum framerate)";
|
||||
t_ = next_t_frame;
|
||||
}
|
||||
bool is_finished = sampleFrame();
|
||||
setFrameUpdated();
|
||||
if (next_t_adaptive_ < next_t_frame) {
|
||||
VLOG(2) << "Sample frame (because of optic flow)";
|
||||
t_ = next_t_adaptive_;
|
||||
} else {
|
||||
VLOG(2) << "Sample frame (because of minimum framerate)";
|
||||
t_ = next_t_frame;
|
||||
}
|
||||
bool is_finished = sampleFrame();
|
||||
setFrameUpdated();
|
||||
|
||||
if(is_finished)
|
||||
{
|
||||
running_ = false;
|
||||
return false;
|
||||
}
|
||||
if (is_finished) {
|
||||
running_ = false;
|
||||
return false;
|
||||
}
|
||||
|
||||
if(callback_)
|
||||
{
|
||||
sim_data_.timestamp = static_cast<Time>(ze::secToNanosec(t_));
|
||||
callback_(sim_data_);
|
||||
}
|
||||
else
|
||||
{
|
||||
LOG_FIRST_N(WARNING, 1) << "No camera callback registered but measurements available.";
|
||||
}
|
||||
return true;
|
||||
}
|
||||
if (callback_) {
|
||||
sim_data_.timestamp = static_cast<Time>(ze::secToNanosec(t_));
|
||||
callback_(sim_data_);
|
||||
} else {
|
||||
LOG_FIRST_N(WARNING, 1)
|
||||
<< "No camera callback registered but measurements available.";
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
bool DataProviderOnlineSimple::ok() const
|
||||
{
|
||||
if (!running_)
|
||||
{
|
||||
VLOG(1) << "Data Provider was paused/terminated.";
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
bool DataProviderOnlineSimple::ok() const {
|
||||
if (!running_) {
|
||||
VLOG(1) << "Data Provider was paused/terminated.";
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
} // namespace event_camera_simulator
|
||||
|
@ -1,242 +1,236 @@
|
||||
#include <esim/data_provider/data_provider_rosbag.hpp>
|
||||
|
||||
#include <ze/common/logging.hpp>
|
||||
#include <rosbag/query.h>
|
||||
#include <cv_bridge/cv_bridge.h>
|
||||
#include <esim/data_provider/data_provider_rosbag.hpp>
|
||||
#include <rosbag/query.h>
|
||||
#include <sensor_msgs/image_encodings.h>
|
||||
|
||||
#include <ze/common/time_conversions.hpp>
|
||||
#include <ze/common/string_utils.hpp>
|
||||
#include <ze/common/logging.hpp>
|
||||
#include <ze/common/path_utils.hpp>
|
||||
#include <ze/common/string_utils.hpp>
|
||||
#include <ze/common/time_conversions.hpp>
|
||||
|
||||
DEFINE_int32(data_source_stop_after_n_frames, -1,
|
||||
"How many frames should be processed?");
|
||||
DEFINE_double(data_source_start_time_s, 0.0,
|
||||
"Start time in seconds");
|
||||
DEFINE_double(data_source_stop_time_s, 0.0,
|
||||
"Stop time in seconds");
|
||||
DEFINE_int32(
|
||||
data_source_stop_after_n_frames, -1, "How many frames should be processed?"
|
||||
);
|
||||
DEFINE_double(data_source_start_time_s, 0.0, "Start time in seconds");
|
||||
DEFINE_double(data_source_stop_time_s, 0.0, "Stop time in seconds");
|
||||
|
||||
namespace event_camera_simulator {
|
||||
|
||||
DataProviderRosbag::DataProviderRosbag(
|
||||
const std::string& bag_filename,
|
||||
const std::map<std::string, size_t>& img_topic_camidx_map)
|
||||
: DataProviderBase(DataProviderType::Rosbag)
|
||||
, img_topic_camidx_map_(img_topic_camidx_map)
|
||||
{
|
||||
loadRosbag(bag_filename);
|
||||
DataProviderRosbag::DataProviderRosbag(
|
||||
const std::string& bag_filename,
|
||||
const std::map<std::string, size_t>& img_topic_camidx_map
|
||||
)
|
||||
: DataProviderBase(DataProviderType::Rosbag),
|
||||
img_topic_camidx_map_(img_topic_camidx_map) {
|
||||
loadRosbag(bag_filename);
|
||||
|
||||
std::vector<std::string> topics;
|
||||
for (auto it : img_topic_camidx_map_)
|
||||
{
|
||||
VLOG(1) << "Subscribing to: " << it.first;
|
||||
topics.push_back(it.first);
|
||||
sim_data_.images.emplace_back(ImagePtr(new Image()));
|
||||
}
|
||||
std::vector<std::string> topics;
|
||||
for (auto it : img_topic_camidx_map_) {
|
||||
VLOG(1) << "Subscribing to: " << it.first;
|
||||
topics.push_back(it.first);
|
||||
sim_data_.images.emplace_back(ImagePtr(new Image()));
|
||||
}
|
||||
|
||||
initBagView(topics);
|
||||
}
|
||||
|
||||
void DataProviderRosbag::loadRosbag(const std::string& bag_filename)
|
||||
{
|
||||
CHECK(ze::fileExists(bag_filename)) << "File does not exist: " << bag_filename;
|
||||
VLOG(1) << "Opening rosbag: " << bag_filename << " ...";
|
||||
bag_.reset(new rosbag::Bag);
|
||||
try
|
||||
{
|
||||
bag_->open(bag_filename, rosbag::bagmode::Read);
|
||||
}
|
||||
catch (const std::exception e)
|
||||
{
|
||||
LOG(FATAL) << "Could not open rosbag " << bag_filename << ": " << e.what();
|
||||
}
|
||||
}
|
||||
|
||||
void DataProviderRosbag::initBagView(const std::vector<std::string>& topics)
|
||||
{
|
||||
bag_view_.reset(new rosbag::View(*bag_, rosbag::TopicQuery(topics)));
|
||||
if (FLAGS_data_source_start_time_s != 0.0 ||
|
||||
FLAGS_data_source_stop_time_s != 0.0)
|
||||
{
|
||||
CHECK_GE(FLAGS_data_source_start_time_s, 0);
|
||||
CHECK_GE(FLAGS_data_source_stop_time_s, 0);
|
||||
|
||||
// Retrieve begin and end times from the bag file (given the topic query).
|
||||
const ros::Time absolute_time_offset = bag_view_->getBeginTime();
|
||||
VLOG(2) << "Bag begin time: " << absolute_time_offset;
|
||||
const ros::Time absolute_end_time = bag_view_->getEndTime();
|
||||
VLOG(2) << "Bag end time: " << absolute_end_time;
|
||||
if (absolute_end_time < absolute_time_offset)
|
||||
{
|
||||
LOG(FATAL) << "Invalid bag end time: "
|
||||
<< absolute_end_time
|
||||
<< ". Check that the bag file is properly indexed"
|
||||
<< " by running 'rosbag reindex file.bag'.";
|
||||
initBagView(topics);
|
||||
}
|
||||
|
||||
// Compute start and stop time.
|
||||
LOG(INFO) << "Starting rosbag at time: " << FLAGS_data_source_start_time_s;
|
||||
const ros::Duration data_source_start_time(FLAGS_data_source_start_time_s);
|
||||
const ros::Time absolute_start_time =
|
||||
data_source_start_time.isZero() ?
|
||||
absolute_time_offset : absolute_time_offset + data_source_start_time;
|
||||
const ros::Duration data_source_stop_time(FLAGS_data_source_stop_time_s);
|
||||
const ros::Time absolute_stop_time =
|
||||
data_source_stop_time.isZero() ?
|
||||
absolute_end_time : absolute_time_offset + data_source_stop_time;
|
||||
|
||||
// Ensure that the provided stop time is valid.
|
||||
// When a bag file is corrupted / invalid the bag end time
|
||||
// cannot be retrieved. Run rosbag info to check if the bag file
|
||||
// is properly indexed.
|
||||
if (absolute_stop_time < absolute_start_time)
|
||||
{
|
||||
LOG(ERROR) << "Provided stop time is less than bag begin time. "
|
||||
<< "Please make sure to provide a valid stop time and "
|
||||
<< "check that the bag file is properly indexed "
|
||||
<< "by running 'rosbag reindex file.bag'.";
|
||||
}
|
||||
else if (absolute_stop_time > absolute_end_time)
|
||||
{
|
||||
LOG(ERROR) << "Provided stop time is greater than bag end time. "
|
||||
<< "Please make sure to provide a valid stop time and "
|
||||
<< "check that the bag file is properly indexed "
|
||||
<< "by running 'rosbag reindex file.bag'.";
|
||||
}
|
||||
else
|
||||
{
|
||||
VLOG(1) << "Absolute start time set to " << absolute_start_time;
|
||||
VLOG(1) << "Absolute stop time set to " << absolute_stop_time;
|
||||
void DataProviderRosbag::loadRosbag(const std::string& bag_filename) {
|
||||
CHECK(ze::fileExists(bag_filename))
|
||||
<< "File does not exist: " << bag_filename;
|
||||
VLOG(1) << "Opening rosbag: " << bag_filename << " ...";
|
||||
bag_.reset(new rosbag::Bag);
|
||||
try {
|
||||
bag_->open(bag_filename, rosbag::bagmode::Read);
|
||||
} catch (const std::exception e) {
|
||||
LOG(FATAL) << "Could not open rosbag " << bag_filename << ": "
|
||||
<< e.what();
|
||||
}
|
||||
}
|
||||
|
||||
// Reset the bag View
|
||||
CHECK_GT(absolute_stop_time, absolute_start_time);
|
||||
CHECK_LE(absolute_stop_time, absolute_end_time);
|
||||
bag_view_.reset(new rosbag::View(*bag_, rosbag::TopicQuery(topics),
|
||||
absolute_start_time, absolute_stop_time));
|
||||
}
|
||||
bag_view_it_ = bag_view_->begin();
|
||||
void DataProviderRosbag::initBagView(const std::vector<std::string>& topics
|
||||
) {
|
||||
bag_view_.reset(new rosbag::View(*bag_, rosbag::TopicQuery(topics)));
|
||||
if (FLAGS_data_source_start_time_s != 0.0
|
||||
|| FLAGS_data_source_stop_time_s != 0.0) {
|
||||
CHECK_GE(FLAGS_data_source_start_time_s, 0);
|
||||
CHECK_GE(FLAGS_data_source_stop_time_s, 0);
|
||||
|
||||
// Ensure that topics exist
|
||||
// The connection info only contains topics that are available in the bag
|
||||
// If a topic is requested that is not avaiable, it does not show up in the info.
|
||||
std::vector<const rosbag::ConnectionInfo*> connection_infos =
|
||||
bag_view_->getConnections();
|
||||
if (topics.size() != connection_infos.size())
|
||||
{
|
||||
LOG(ERROR) << "Successfully connected to " << connection_infos.size() << " topics:";
|
||||
for (const rosbag::ConnectionInfo* info : connection_infos)
|
||||
{
|
||||
LOG(ERROR) << "*) " << info->topic;
|
||||
// Retrieve begin and end times from the bag file (given the topic
|
||||
// query).
|
||||
const ros::Time absolute_time_offset = bag_view_->getBeginTime();
|
||||
VLOG(2) << "Bag begin time: " << absolute_time_offset;
|
||||
const ros::Time absolute_end_time = bag_view_->getEndTime();
|
||||
VLOG(2) << "Bag end time: " << absolute_end_time;
|
||||
if (absolute_end_time < absolute_time_offset) {
|
||||
LOG(FATAL) << "Invalid bag end time: " << absolute_end_time
|
||||
<< ". Check that the bag file is properly indexed"
|
||||
<< " by running 'rosbag reindex file.bag'.";
|
||||
}
|
||||
|
||||
// Compute start and stop time.
|
||||
LOG(INFO) << "Starting rosbag at time: "
|
||||
<< FLAGS_data_source_start_time_s;
|
||||
const ros::Duration data_source_start_time(
|
||||
FLAGS_data_source_start_time_s
|
||||
);
|
||||
const ros::Time absolute_start_time =
|
||||
data_source_start_time.isZero()
|
||||
? absolute_time_offset
|
||||
: absolute_time_offset + data_source_start_time;
|
||||
const ros::Duration data_source_stop_time(
|
||||
FLAGS_data_source_stop_time_s
|
||||
);
|
||||
const ros::Time absolute_stop_time =
|
||||
data_source_stop_time.isZero()
|
||||
? absolute_end_time
|
||||
: absolute_time_offset + data_source_stop_time;
|
||||
|
||||
// Ensure that the provided stop time is valid.
|
||||
// When a bag file is corrupted / invalid the bag end time
|
||||
// cannot be retrieved. Run rosbag info to check if the bag file
|
||||
// is properly indexed.
|
||||
if (absolute_stop_time < absolute_start_time) {
|
||||
LOG(ERROR
|
||||
) << "Provided stop time is less than bag begin time. "
|
||||
<< "Please make sure to provide a valid stop time and "
|
||||
<< "check that the bag file is properly indexed "
|
||||
<< "by running 'rosbag reindex file.bag'.";
|
||||
} else if (absolute_stop_time > absolute_end_time) {
|
||||
LOG(ERROR
|
||||
) << "Provided stop time is greater than bag end time. "
|
||||
<< "Please make sure to provide a valid stop time and "
|
||||
<< "check that the bag file is properly indexed "
|
||||
<< "by running 'rosbag reindex file.bag'.";
|
||||
} else {
|
||||
VLOG(1) << "Absolute start time set to " << absolute_start_time;
|
||||
VLOG(1) << "Absolute stop time set to " << absolute_stop_time;
|
||||
}
|
||||
|
||||
// Reset the bag View
|
||||
CHECK_GT(absolute_stop_time, absolute_start_time);
|
||||
CHECK_LE(absolute_stop_time, absolute_end_time);
|
||||
bag_view_.reset(new rosbag::View(
|
||||
*bag_,
|
||||
rosbag::TopicQuery(topics),
|
||||
absolute_start_time,
|
||||
absolute_stop_time
|
||||
));
|
||||
}
|
||||
bag_view_it_ = bag_view_->begin();
|
||||
|
||||
// Ensure that topics exist
|
||||
// The connection info only contains topics that are available in the
|
||||
// bag If a topic is requested that is not avaiable, it does not show up
|
||||
// in the info.
|
||||
std::vector<const rosbag::ConnectionInfo*> connection_infos =
|
||||
bag_view_->getConnections();
|
||||
if (topics.size() != connection_infos.size()) {
|
||||
LOG(ERROR) << "Successfully connected to "
|
||||
<< connection_infos.size() << " topics:";
|
||||
for (const rosbag::ConnectionInfo* info : connection_infos)
|
||||
LOG(ERROR) << "*) " << info->topic;
|
||||
LOG(ERROR) << "Requested " << topics.size() << " topics:";
|
||||
for (const std::string topic : topics)
|
||||
LOG(ERROR) << "*) " << topic;
|
||||
LOG(FATAL
|
||||
) << "Not all requested topics founds in bagfile. "
|
||||
<< "Is topic_cam0, topic_imu0, etc. set correctly? "
|
||||
<< "Maybe removing/adding a slash as prefix solves the problem.";
|
||||
}
|
||||
}
|
||||
LOG(ERROR) << "Requested " << topics.size() << " topics:";
|
||||
for (const std::string topic : topics)
|
||||
{
|
||||
LOG(ERROR) << "*) " << topic;
|
||||
|
||||
size_t DataProviderRosbag::numCameras() const {
|
||||
return img_topic_camidx_map_.size();
|
||||
}
|
||||
LOG(FATAL) << "Not all requested topics founds in bagfile. "
|
||||
<< "Is topic_cam0, topic_imu0, etc. set correctly? "
|
||||
<< "Maybe removing/adding a slash as prefix solves the problem.";
|
||||
}
|
||||
}
|
||||
|
||||
size_t DataProviderRosbag::numCameras() const
|
||||
{
|
||||
return img_topic_camidx_map_.size();
|
||||
}
|
||||
bool DataProviderRosbag::spinOnce() {
|
||||
if (bag_view_it_ != bag_view_->end()) {
|
||||
const rosbag::MessageInstance m = *bag_view_it_;
|
||||
|
||||
bool DataProviderRosbag::spinOnce()
|
||||
{
|
||||
if (bag_view_it_ != bag_view_->end())
|
||||
{
|
||||
const rosbag::MessageInstance m = *bag_view_it_;
|
||||
// Camera Messages:
|
||||
const sensor_msgs::ImageConstPtr m_img =
|
||||
m.instantiate<sensor_msgs::Image>();
|
||||
if (m_img && callback_) {
|
||||
if (!cameraSpin(m_img, m))
|
||||
return false;
|
||||
} else {
|
||||
LOG_FIRST_N(
|
||||
WARNING,
|
||||
1
|
||||
) << "No camera callback registered but measurements available";
|
||||
}
|
||||
|
||||
// Camera Messages:
|
||||
const sensor_msgs::ImageConstPtr m_img = m.instantiate<sensor_msgs::Image>();
|
||||
if (m_img && callback_)
|
||||
{
|
||||
if (!cameraSpin(m_img, m))
|
||||
{
|
||||
++bag_view_it_;
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
LOG_FIRST_N(WARNING, 1) << "No camera callback registered but measurements available";
|
||||
}
|
||||
|
||||
++bag_view_it_;
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
bool DataProviderRosbag::cameraSpin(
|
||||
sensor_msgs::ImageConstPtr m_img, const rosbag::MessageInstance& m
|
||||
) {
|
||||
auto it = img_topic_camidx_map_.find(m.getTopic());
|
||||
if (it != img_topic_camidx_map_.end()) {
|
||||
++n_processed_images_;
|
||||
if (FLAGS_data_source_stop_after_n_frames > 0
|
||||
&& n_processed_images_
|
||||
> FLAGS_data_source_stop_after_n_frames) {
|
||||
LOG(WARNING)
|
||||
<< "Data source has reached max number of desired frames.";
|
||||
running_ = false;
|
||||
return false;
|
||||
}
|
||||
|
||||
bool DataProviderRosbag::cameraSpin(sensor_msgs::ImageConstPtr m_img,
|
||||
const rosbag::MessageInstance& m)
|
||||
{
|
||||
auto it = img_topic_camidx_map_.find(m.getTopic());
|
||||
if (it != img_topic_camidx_map_.end())
|
||||
{
|
||||
++n_processed_images_;
|
||||
if (FLAGS_data_source_stop_after_n_frames > 0 &&
|
||||
n_processed_images_ > FLAGS_data_source_stop_after_n_frames)
|
||||
{
|
||||
LOG(WARNING) << "Data source has reached max number of desired frames.";
|
||||
running_ = false;
|
||||
return false;
|
||||
cv_bridge::CvImagePtr cv_ptr;
|
||||
|
||||
try {
|
||||
cv_ptr = cv_bridge::toCvCopy(
|
||||
m_img,
|
||||
sensor_msgs::image_encodings::MONO8
|
||||
);
|
||||
} catch (cv_bridge::Exception& e) {
|
||||
LOG(WARNING) << "cv_bridge exception: %s", e.what();
|
||||
return false;
|
||||
}
|
||||
|
||||
cv_ptr->image.convertTo(
|
||||
*(sim_data_.images[0]),
|
||||
cv::DataType<ImageFloatType>::type,
|
||||
1. / 255.
|
||||
);
|
||||
sim_data_.timestamp =
|
||||
static_cast<Time>(m_img->header.stamp.toNSec());
|
||||
|
||||
sim_data_.imu_updated = false;
|
||||
sim_data_.images_updated = true;
|
||||
sim_data_.depthmaps_updated = false;
|
||||
sim_data_.optic_flows_updated = false;
|
||||
sim_data_.twists_updated = false;
|
||||
sim_data_.poses_updated = false;
|
||||
|
||||
callback_(sim_data_);
|
||||
} else {
|
||||
LOG_FIRST_N(WARNING, 1)
|
||||
<< "Topic in bag that is not subscribed: " << m.getTopic();
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
cv_bridge::CvImagePtr cv_ptr;
|
||||
|
||||
try
|
||||
{
|
||||
cv_ptr = cv_bridge::toCvCopy(m_img, sensor_msgs::image_encodings::MONO8);
|
||||
}
|
||||
catch (cv_bridge::Exception& e)
|
||||
{
|
||||
LOG(WARNING) << "cv_bridge exception: %s", e.what();
|
||||
return false;
|
||||
bool DataProviderRosbag::ok() const {
|
||||
if (!running_) {
|
||||
VLOG(1) << "Data Provider was paused/terminated.";
|
||||
return false;
|
||||
}
|
||||
if (bag_view_it_ == bag_view_->end()) {
|
||||
VLOG(1) << "All data processed.";
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
cv_ptr->image.convertTo(*(sim_data_.images[0]), cv::DataType<ImageFloatType>::type, 1./255.);
|
||||
sim_data_.timestamp = static_cast<Time>(m_img->header.stamp.toNSec());
|
||||
|
||||
sim_data_.imu_updated = false;
|
||||
sim_data_.images_updated = true;
|
||||
sim_data_.depthmaps_updated = false;
|
||||
sim_data_.optic_flows_updated = false;
|
||||
sim_data_.twists_updated = false;
|
||||
sim_data_.poses_updated = false;
|
||||
|
||||
callback_(sim_data_);
|
||||
}
|
||||
else
|
||||
{
|
||||
LOG_FIRST_N(WARNING, 1) << "Topic in bag that is not subscribed: " << m.getTopic();
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
bool DataProviderRosbag::ok() const
|
||||
{
|
||||
if (!running_)
|
||||
{
|
||||
VLOG(1) << "Data Provider was paused/terminated.";
|
||||
return false;
|
||||
}
|
||||
if (bag_view_it_ == bag_view_->end())
|
||||
{
|
||||
VLOG(1) << "All data processed.";
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
size_t DataProviderRosbag::size() const
|
||||
{
|
||||
CHECK(bag_view_);
|
||||
return bag_view_->size();
|
||||
}
|
||||
size_t DataProviderRosbag::size() const {
|
||||
CHECK(bag_view_);
|
||||
return bag_view_->size();
|
||||
}
|
||||
|
||||
} // namespace event_camera_simulator
|
||||
|
@ -1,199 +1,271 @@
|
||||
#include <esim/common/utils.hpp>
|
||||
#include <esim/data_provider/renderer_factory.hpp>
|
||||
#include <esim/imp_planar_renderer/planar_renderer.hpp>
|
||||
#include <esim/imp_panorama_renderer/panorama_renderer.hpp>
|
||||
#include <esim/imp_opengl_renderer/opengl_renderer.hpp>
|
||||
#include <esim/imp_unrealcv_renderer/unrealcv_renderer.hpp>
|
||||
#include <esim/imp_multi_objects_2d/imp_multi_objects_2d_renderer.hpp>
|
||||
#include <ze/cameras/camera_models.hpp>
|
||||
#include <ze/cameras/camera_impl.hpp>
|
||||
#include <ze/common/logging.hpp>
|
||||
#include <esim/imp_opengl_renderer/opengl_renderer.hpp>
|
||||
#include <esim/imp_panorama_renderer/panorama_renderer.hpp>
|
||||
#include <esim/imp_planar_renderer/planar_renderer.hpp>
|
||||
#include <esim/imp_unrealcv_renderer/unrealcv_renderer.hpp>
|
||||
#include <opencv2/imgcodecs/imgcodecs.hpp>
|
||||
#include <opencv2/imgproc/imgproc.hpp>
|
||||
#include <ze/cameras/camera_impl.hpp>
|
||||
#include <ze/cameras/camera_models.hpp>
|
||||
#include <ze/common/logging.hpp>
|
||||
|
||||
DEFINE_int32(renderer_type, 0, " 0: Planar renderer, 1: Panorama renderer, 2: OpenGL renderer");
|
||||
DEFINE_int32(
|
||||
renderer_type,
|
||||
0,
|
||||
" 0: Planar renderer, 1: Panorama renderer, 2: OpenGL renderer"
|
||||
);
|
||||
|
||||
DEFINE_string(renderer_texture, "",
|
||||
"Path to image which will be used to texture the plane");
|
||||
DEFINE_string(
|
||||
renderer_texture,
|
||||
"",
|
||||
"Path to image which will be used to texture the plane"
|
||||
);
|
||||
|
||||
DEFINE_double(renderer_hfov_cam_source_deg, 130.0,
|
||||
"Horizontal FoV of the source camera (that captured the image on the plane)");
|
||||
DEFINE_double(
|
||||
renderer_hfov_cam_source_deg,
|
||||
130.0,
|
||||
"Horizontal FoV of the source camera (that captured the image on "
|
||||
"the plane)"
|
||||
);
|
||||
|
||||
DEFINE_double(renderer_preprocess_median_blur, 0,
|
||||
"Kernel size of the preprocessing median blur.");
|
||||
DEFINE_double(
|
||||
renderer_preprocess_median_blur,
|
||||
0,
|
||||
"Kernel size of the preprocessing median blur."
|
||||
);
|
||||
|
||||
DEFINE_double(renderer_preprocess_gaussian_blur, 0,
|
||||
"Amount of preprocessing Gaussian blur.");
|
||||
DEFINE_double(
|
||||
renderer_preprocess_gaussian_blur,
|
||||
0,
|
||||
"Amount of preprocessing Gaussian blur."
|
||||
);
|
||||
|
||||
DEFINE_double(renderer_plane_x, 0.0,
|
||||
"x position of the center of the plane, in world coordinates");
|
||||
DEFINE_double(
|
||||
renderer_plane_x,
|
||||
0.0,
|
||||
"x position of the center of the plane, in world coordinates"
|
||||
);
|
||||
|
||||
DEFINE_double(renderer_plane_y, 0.0,
|
||||
"y position of the center of the plane, in world coordinates");
|
||||
DEFINE_double(
|
||||
renderer_plane_y,
|
||||
0.0,
|
||||
"y position of the center of the plane, in world coordinates"
|
||||
);
|
||||
|
||||
DEFINE_double(renderer_plane_z, -1.0,
|
||||
"z position of the center of the plane, in world coordinates");
|
||||
DEFINE_double(
|
||||
renderer_plane_z,
|
||||
-1.0,
|
||||
"z position of the center of the plane, in world coordinates"
|
||||
);
|
||||
|
||||
DEFINE_double(renderer_plane_qw, 0.0,
|
||||
"w component of the quaternion q_W_P (orientation of the plane with respect to the world)");
|
||||
DEFINE_double(
|
||||
renderer_plane_qw,
|
||||
0.0,
|
||||
"w component of the quaternion q_W_P (orientation of the plane "
|
||||
"with respect to the world)"
|
||||
);
|
||||
|
||||
DEFINE_double(renderer_plane_qx, 1.0,
|
||||
"x component of the quaternion q_W_P (orientation of the plane with respect to the world)");
|
||||
DEFINE_double(
|
||||
renderer_plane_qx,
|
||||
1.0,
|
||||
"x component of the quaternion q_W_P (orientation of the plane "
|
||||
"with respect to the world)"
|
||||
);
|
||||
|
||||
DEFINE_double(renderer_plane_qy, 0.0,
|
||||
"y component of the quaternion q_W_P (orientation of the plane with respect to the world)");
|
||||
DEFINE_double(
|
||||
renderer_plane_qy,
|
||||
0.0,
|
||||
"y component of the quaternion q_W_P (orientation of the plane "
|
||||
"with respect to the world)"
|
||||
);
|
||||
|
||||
DEFINE_double(renderer_plane_qz, 0.0,
|
||||
"z component of the quaternion q_W_P (orientation of the plane with respect to the world)");
|
||||
DEFINE_double(
|
||||
renderer_plane_qz,
|
||||
0.0,
|
||||
"z component of the quaternion q_W_P (orientation of the plane "
|
||||
"with respect to the world)"
|
||||
);
|
||||
|
||||
DEFINE_double(renderer_z_min, 0.01,
|
||||
"Minimum clipping distance.");
|
||||
DEFINE_double(renderer_z_min, 0.01, "Minimum clipping distance.");
|
||||
|
||||
DEFINE_double(renderer_z_max, 10.0,
|
||||
"Maximum clipping distance.");
|
||||
DEFINE_double(renderer_z_max, 10.0, "Maximum clipping distance.");
|
||||
|
||||
DEFINE_bool(renderer_extend_border, false,
|
||||
"Whether to extend the borders of the plane to infinity or not.");
|
||||
DEFINE_bool(
|
||||
renderer_extend_border,
|
||||
false,
|
||||
"Whether to extend the borders of the plane to infinity or not."
|
||||
);
|
||||
|
||||
DEFINE_double(renderer_panorama_qw, 0.0,
|
||||
"w component of the quaternion q_W_P (orientation of the panorama with respect to the world)");
|
||||
DEFINE_double(
|
||||
renderer_panorama_qw,
|
||||
0.0,
|
||||
"w component of the quaternion q_W_P (orientation of the "
|
||||
"panorama with respect to the world)"
|
||||
);
|
||||
|
||||
DEFINE_double(renderer_panorama_qx, 1.0,
|
||||
"x component of the quaternion q_W_P (orientation of the panorama with respect to the world)");
|
||||
DEFINE_double(
|
||||
renderer_panorama_qx,
|
||||
1.0,
|
||||
"x component of the quaternion q_W_P (orientation of the "
|
||||
"panorama with respect to the world)"
|
||||
);
|
||||
|
||||
DEFINE_double(renderer_panorama_qy, 0.0,
|
||||
"y component of the quaternion q_W_P (orientation of the panorama with respect to the world)");
|
||||
DEFINE_double(
|
||||
renderer_panorama_qy,
|
||||
0.0,
|
||||
"y component of the quaternion q_W_P (orientation of the "
|
||||
"panorama with respect to the world)"
|
||||
);
|
||||
|
||||
DEFINE_double(renderer_panorama_qz, 0.0,
|
||||
"z component of the quaternion q_W_P (orientation of the panorama with respect to the world)");
|
||||
DEFINE_double(
|
||||
renderer_panorama_qz,
|
||||
0.0,
|
||||
"z component of the quaternion q_W_P (orientation of the "
|
||||
"panorama with respect to the world)"
|
||||
);
|
||||
|
||||
namespace event_camera_simulator {
|
||||
|
||||
bool loadPreprocessedImage(const std::string& path_to_img, cv::Mat* img)
|
||||
{
|
||||
CHECK(img);
|
||||
VLOG(1) << "Loading texture file from file: " << FLAGS_renderer_texture << ".";
|
||||
*img = cv::imread(path_to_img, 0);
|
||||
if(!img->data)
|
||||
{
|
||||
LOG(FATAL) << "Could not open image at: " << FLAGS_renderer_texture << ".";
|
||||
return false;
|
||||
}
|
||||
bool loadPreprocessedImage(const std::string& path_to_img, cv::Mat* img) {
|
||||
CHECK(img);
|
||||
VLOG(1) << "Loading texture file from file: " << FLAGS_renderer_texture
|
||||
<< ".";
|
||||
*img = cv::imread(path_to_img, 0);
|
||||
if (!img->data) {
|
||||
LOG(FATAL) << "Could not open image at: " << FLAGS_renderer_texture
|
||||
<< ".";
|
||||
return false;
|
||||
}
|
||||
|
||||
if(FLAGS_renderer_preprocess_median_blur > 1)
|
||||
{
|
||||
VLOG(1) << "Pre-filtering the texture with median filter of size: "
|
||||
<< FLAGS_renderer_preprocess_median_blur << ".";
|
||||
cv::medianBlur(*img, *img, FLAGS_renderer_preprocess_median_blur);
|
||||
}
|
||||
if (FLAGS_renderer_preprocess_median_blur > 1) {
|
||||
VLOG(1) << "Pre-filtering the texture with median filter of size: "
|
||||
<< FLAGS_renderer_preprocess_median_blur << ".";
|
||||
cv::medianBlur(*img, *img, FLAGS_renderer_preprocess_median_blur);
|
||||
}
|
||||
|
||||
if(FLAGS_renderer_preprocess_gaussian_blur > 0)
|
||||
{
|
||||
VLOG(1) << "Pre-filtering the texture with gaussian filter of size: "
|
||||
<< FLAGS_renderer_preprocess_gaussian_blur << ".";
|
||||
cv::GaussianBlur(*img, *img, cv::Size(21,21), FLAGS_renderer_preprocess_gaussian_blur);
|
||||
}
|
||||
if (FLAGS_renderer_preprocess_gaussian_blur > 0) {
|
||||
VLOG(1
|
||||
) << "Pre-filtering the texture with gaussian filter of size: "
|
||||
<< FLAGS_renderer_preprocess_gaussian_blur << ".";
|
||||
cv::GaussianBlur(
|
||||
*img,
|
||||
*img,
|
||||
cv::Size(21, 21),
|
||||
FLAGS_renderer_preprocess_gaussian_blur
|
||||
);
|
||||
}
|
||||
|
||||
img->convertTo(*img, cv::DataType<ImageFloatType>::type, 1.0/255.0);
|
||||
img->convertTo(*img, cv::DataType<ImageFloatType>::type, 1.0 / 255.0);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
Renderer::Ptr loadRendererFromGflags()
|
||||
{
|
||||
Renderer::Ptr renderer;
|
||||
|
||||
switch (FLAGS_renderer_type)
|
||||
{
|
||||
case 0: // Planar renderer
|
||||
{
|
||||
cv::Mat img_src;
|
||||
if(!loadPreprocessedImage(FLAGS_renderer_texture, &img_src))
|
||||
{
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
double f_src = hfovToFocalLength(FLAGS_renderer_hfov_cam_source_deg, img_src.cols);
|
||||
Camera::Ptr cam_src = std::make_shared<ze::PinholeCamera>(
|
||||
img_src.cols, img_src.rows, ze::CameraType::Pinhole,
|
||||
(Vector4() << f_src, f_src, 0.5 * img_src.cols, 0.5 * img_src.rows).finished(),
|
||||
ze::VectorX());
|
||||
|
||||
Transformation T_W_P;
|
||||
T_W_P.getPosition() = ze::Position(FLAGS_renderer_plane_x,
|
||||
FLAGS_renderer_plane_y,
|
||||
FLAGS_renderer_plane_z);
|
||||
|
||||
T_W_P.getRotation() = ze::Quaternion(FLAGS_renderer_plane_qw,
|
||||
FLAGS_renderer_plane_qx,
|
||||
FLAGS_renderer_plane_qy,
|
||||
FLAGS_renderer_plane_qz);
|
||||
|
||||
renderer.reset(new PlanarRenderer(img_src, cam_src,
|
||||
T_W_P,
|
||||
FLAGS_renderer_z_min,
|
||||
FLAGS_renderer_z_max,
|
||||
FLAGS_renderer_extend_border));
|
||||
|
||||
break;
|
||||
return true;
|
||||
}
|
||||
case 1: // Panorama renderer
|
||||
{
|
||||
cv::Mat img_src;
|
||||
if(!loadPreprocessedImage(FLAGS_renderer_texture, &img_src))
|
||||
{
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
Transformation::Rotation R_W_P;
|
||||
R_W_P = ze::Quaternion(FLAGS_renderer_panorama_qw,
|
||||
FLAGS_renderer_panorama_qx,
|
||||
FLAGS_renderer_panorama_qy,
|
||||
FLAGS_renderer_panorama_qz);
|
||||
Renderer::Ptr loadRendererFromGflags() {
|
||||
Renderer::Ptr renderer;
|
||||
|
||||
renderer.reset(new PanoramaRenderer(img_src, R_W_P));
|
||||
break;
|
||||
switch (FLAGS_renderer_type) {
|
||||
case 0: // Planar renderer
|
||||
{
|
||||
cv::Mat img_src;
|
||||
if (!loadPreprocessedImage(FLAGS_renderer_texture, &img_src))
|
||||
return nullptr;
|
||||
|
||||
double f_src = hfovToFocalLength(
|
||||
FLAGS_renderer_hfov_cam_source_deg,
|
||||
img_src.cols
|
||||
);
|
||||
Camera::Ptr cam_src = std::make_shared<ze::PinholeCamera>(
|
||||
img_src.cols,
|
||||
img_src.rows,
|
||||
ze::CameraType::Pinhole,
|
||||
(Vector4() << f_src,
|
||||
f_src,
|
||||
0.5 * img_src.cols,
|
||||
0.5 * img_src.rows)
|
||||
.finished(),
|
||||
ze::VectorX()
|
||||
);
|
||||
|
||||
Transformation T_W_P;
|
||||
T_W_P.getPosition() = ze::Position(
|
||||
FLAGS_renderer_plane_x,
|
||||
FLAGS_renderer_plane_y,
|
||||
FLAGS_renderer_plane_z
|
||||
);
|
||||
|
||||
T_W_P.getRotation() = ze::Quaternion(
|
||||
FLAGS_renderer_plane_qw,
|
||||
FLAGS_renderer_plane_qx,
|
||||
FLAGS_renderer_plane_qy,
|
||||
FLAGS_renderer_plane_qz
|
||||
);
|
||||
|
||||
renderer.reset(new PlanarRenderer(
|
||||
img_src,
|
||||
cam_src,
|
||||
T_W_P,
|
||||
FLAGS_renderer_z_min,
|
||||
FLAGS_renderer_z_max,
|
||||
FLAGS_renderer_extend_border
|
||||
));
|
||||
|
||||
break;
|
||||
}
|
||||
case 1: // Panorama renderer
|
||||
{
|
||||
cv::Mat img_src;
|
||||
if (!loadPreprocessedImage(FLAGS_renderer_texture, &img_src))
|
||||
return nullptr;
|
||||
|
||||
Transformation::Rotation R_W_P;
|
||||
R_W_P = ze::Quaternion(
|
||||
FLAGS_renderer_panorama_qw,
|
||||
FLAGS_renderer_panorama_qx,
|
||||
FLAGS_renderer_panorama_qy,
|
||||
FLAGS_renderer_panorama_qz
|
||||
);
|
||||
|
||||
renderer.reset(new PanoramaRenderer(img_src, R_W_P));
|
||||
break;
|
||||
}
|
||||
case 2: // OpenGL renderer
|
||||
{
|
||||
renderer.reset(new OpenGLRenderer());
|
||||
break;
|
||||
}
|
||||
case 3: // UnrealCV renderer
|
||||
{
|
||||
renderer.reset(new UnrealCvRenderer());
|
||||
break;
|
||||
}
|
||||
default: {
|
||||
LOG(FATAL) << "Renderer type is not known.";
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
return renderer;
|
||||
}
|
||||
case 2: // OpenGL renderer
|
||||
{
|
||||
renderer.reset(new OpenGLRenderer());
|
||||
break;
|
||||
}
|
||||
case 3: // UnrealCV renderer
|
||||
{
|
||||
renderer.reset(new UnrealCvRenderer());
|
||||
break;
|
||||
}
|
||||
default:
|
||||
{
|
||||
LOG(FATAL) << "Renderer type is not known.";
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
return renderer;
|
||||
}
|
||||
SimpleRenderer::Ptr loadSimpleRendererFromGflags() {
|
||||
SimpleRenderer::Ptr renderer;
|
||||
|
||||
SimpleRenderer::Ptr loadSimpleRendererFromGflags()
|
||||
{
|
||||
SimpleRenderer::Ptr renderer;
|
||||
switch (FLAGS_renderer_type) {
|
||||
case 0: // Multi-objects 2D renderer
|
||||
{
|
||||
renderer.reset(new MultiObject2DRenderer());
|
||||
|
||||
switch (FLAGS_renderer_type)
|
||||
{
|
||||
case 0: // Multi-objects 2D renderer
|
||||
{
|
||||
renderer.reset(new MultiObject2DRenderer());
|
||||
break;
|
||||
}
|
||||
default: {
|
||||
LOG(FATAL) << "Renderer type is not known.";
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
break;
|
||||
return renderer;
|
||||
}
|
||||
default:
|
||||
{
|
||||
LOG(FATAL) << "Renderer type is not known.";
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
return renderer;
|
||||
}
|
||||
|
||||
} // namespace event_camera_simulator
|
||||
|
@ -1,49 +1,55 @@
|
||||
#pragma once
|
||||
|
||||
#include <ze/common/macros.hpp>
|
||||
#include <esim/common/types.hpp>
|
||||
#include <ze/common/macros.hpp>
|
||||
|
||||
namespace event_camera_simulator {
|
||||
|
||||
//! Represents a rendering engine that generates images (and other outputs,
|
||||
//! such as depth maps, or optical flow maps) given a scene and a camera position.
|
||||
class Renderer
|
||||
{
|
||||
public:
|
||||
ZE_POINTER_TYPEDEFS(Renderer);
|
||||
//! Represents a rendering engine that generates images (and other outputs,
|
||||
//! such as depth maps, or optical flow maps) given a scene and a camera
|
||||
//! position.
|
||||
class Renderer {
|
||||
public:
|
||||
ZE_POINTER_TYPEDEFS(Renderer);
|
||||
|
||||
Renderer() {}
|
||||
Renderer() {}
|
||||
|
||||
//! Render an image at a given pose.
|
||||
virtual void render(const Transformation& T_W_C,
|
||||
const std::vector<Transformation>& T_W_OBJ,
|
||||
const ImagePtr& out_image,
|
||||
const DepthmapPtr& out_depthmap) const = 0;
|
||||
//! Render an image at a given pose.
|
||||
virtual void render(
|
||||
const Transformation& T_W_C,
|
||||
const std::vector<Transformation>& T_W_OBJ,
|
||||
const ImagePtr& out_image,
|
||||
const DepthmapPtr& out_depthmap
|
||||
) const = 0;
|
||||
|
||||
//! Returns true if the rendering engine can compute optic flow, false
|
||||
//! otherwise
|
||||
virtual bool canComputeOpticFlow() const = 0;
|
||||
|
||||
//! Returns true if the rendering engine can compute optic flow, false otherwise
|
||||
virtual bool canComputeOpticFlow() const = 0;
|
||||
//! Render an image + depth map + optic flow map at a given pose,
|
||||
//! given the camera linear and angular velocity
|
||||
virtual void renderWithFlow(
|
||||
const Transformation& T_W_C,
|
||||
const LinearVelocity& v_WC,
|
||||
const AngularVelocity& w_WC,
|
||||
const std::vector<Transformation>& T_W_OBJ,
|
||||
const std::vector<LinearVelocity>& linear_velocity_obj,
|
||||
const std::vector<AngularVelocity>& angular_velocity_obj,
|
||||
const ImagePtr& out_image,
|
||||
const DepthmapPtr& out_depthmap,
|
||||
const OpticFlowPtr& optic_flow_map
|
||||
) const {}
|
||||
|
||||
//! Render an image + depth map + optic flow map at a given pose,
|
||||
//! given the camera linear and angular velocity
|
||||
virtual void renderWithFlow(const Transformation& T_W_C,
|
||||
const LinearVelocity& v_WC,
|
||||
const AngularVelocity& w_WC,
|
||||
const std::vector<Transformation>& T_W_OBJ,
|
||||
const std::vector<LinearVelocity>& linear_velocity_obj,
|
||||
const std::vector<AngularVelocity>& angular_velocity_obj,
|
||||
const ImagePtr& out_image,
|
||||
const DepthmapPtr& out_depthmap,
|
||||
const OpticFlowPtr& optic_flow_map) const {}
|
||||
//! Sets the camera
|
||||
virtual void setCamera(const ze::Camera::Ptr& camera) = 0;
|
||||
|
||||
//! Sets the camera
|
||||
virtual void setCamera(const ze::Camera::Ptr& camera) = 0;
|
||||
//! Get the camera rig
|
||||
const ze::Camera::Ptr& getCamera() const {
|
||||
return camera_;
|
||||
}
|
||||
|
||||
//! Get the camera rig
|
||||
const ze::Camera::Ptr& getCamera() const { return camera_; }
|
||||
|
||||
protected:
|
||||
ze::Camera::Ptr camera_;
|
||||
};
|
||||
protected:
|
||||
ze::Camera::Ptr camera_;
|
||||
};
|
||||
|
||||
} // namespace event_camera_simulator
|
||||
|
@ -1,32 +1,35 @@
|
||||
#pragma once
|
||||
|
||||
#include <ze/common/macros.hpp>
|
||||
#include <esim/common/types.hpp>
|
||||
#include <ze/common/macros.hpp>
|
||||
|
||||
namespace event_camera_simulator {
|
||||
|
||||
//! Represents a rendering engine that generates images + optic flow maps
|
||||
//! The rendering engine takes care of managing the environment and camera trajectory in the environment
|
||||
class SimpleRenderer
|
||||
{
|
||||
public:
|
||||
ZE_POINTER_TYPEDEFS(SimpleRenderer);
|
||||
//! Represents a rendering engine that generates images + optic flow maps
|
||||
//! The rendering engine takes care of managing the environment and camera
|
||||
//! trajectory in the environment
|
||||
class SimpleRenderer {
|
||||
public:
|
||||
ZE_POINTER_TYPEDEFS(SimpleRenderer);
|
||||
|
||||
SimpleRenderer() {}
|
||||
SimpleRenderer() {}
|
||||
|
||||
//! Render an image + optic flow map at a given time t.
|
||||
//! The rendering engine takes care of generating the camera trajectory, etc.
|
||||
virtual bool render(const Time t,
|
||||
const ImagePtr& out_image,
|
||||
const OpticFlowPtr& optic_flow_map) const = 0;
|
||||
//! Render an image + optic flow map at a given time t.
|
||||
//! The rendering engine takes care of generating the camera trajectory,
|
||||
//! etc.
|
||||
virtual bool render(
|
||||
const Time t,
|
||||
const ImagePtr& out_image,
|
||||
const OpticFlowPtr& optic_flow_map
|
||||
) const = 0;
|
||||
|
||||
//! Get the height of the image plane
|
||||
virtual int getWidth() const = 0;
|
||||
//! Get the height of the image plane
|
||||
virtual int getWidth() const = 0;
|
||||
|
||||
//! Get the width of the image plane
|
||||
virtual int getHeight() const = 0;
|
||||
//! Get the width of the image plane
|
||||
virtual int getHeight() const = 0;
|
||||
|
||||
protected:
|
||||
};
|
||||
protected:
|
||||
};
|
||||
|
||||
} // namespace event_camera_simulator
|
||||
|
@ -1,5 +1,3 @@
|
||||
#include <esim/rendering/renderer_base.hpp>
|
||||
|
||||
namespace event_camera_simulator {
|
||||
|
||||
} // namespace event_camera_simulator
|
||||
namespace event_camera_simulator {} // namespace event_camera_simulator
|
||||
|
@ -1,5 +1,3 @@
|
||||
#include <esim/rendering/simple_renderer_base.hpp>
|
||||
|
||||
namespace event_camera_simulator {
|
||||
|
||||
} // namespace event_camera_simulator
|
||||
namespace event_camera_simulator {} // namespace event_camera_simulator
|
||||
|
@ -1,11 +1,12 @@
|
||||
#pragma once
|
||||
|
||||
#include <gflags/gflags.h>
|
||||
#include <ze/vi_simulation/trajectory_simulator.hpp>
|
||||
#include <ze/vi_simulation/imu_simulator.hpp>
|
||||
#include <ze/vi_simulation/trajectory_simulator.hpp>
|
||||
|
||||
namespace event_camera_simulator {
|
||||
|
||||
ze::ImuSimulator::Ptr loadImuSimulatorFromGflags(const ze::TrajectorySimulator::Ptr &trajectory);
|
||||
ze::ImuSimulator::Ptr
|
||||
loadImuSimulatorFromGflags(const ze::TrajectorySimulator::Ptr& trajectory);
|
||||
|
||||
} // namespace event_camera_simulator
|
||||
|
@ -5,6 +5,9 @@
|
||||
|
||||
namespace event_camera_simulator {
|
||||
|
||||
std::tuple<ze::TrajectorySimulator::Ptr, std::vector<ze::TrajectorySimulator::Ptr>> loadTrajectorySimulatorFromGflags();
|
||||
std::tuple<
|
||||
ze::TrajectorySimulator::Ptr,
|
||||
std::vector<ze::TrajectorySimulator::Ptr>>
|
||||
loadTrajectorySimulatorFromGflags();
|
||||
|
||||
} // namespace event_camera_simulator
|
||||
|
@ -1,50 +1,54 @@
|
||||
#include <ze/common/logging.hpp>
|
||||
#include <esim/trajectory/imu_factory.hpp>
|
||||
#include <ze/common/logging.hpp>
|
||||
|
||||
namespace event_camera_simulator {
|
||||
|
||||
ze::ImuSimulator::Ptr loadImuSimulatorFromGflags(const ze::TrajectorySimulator::Ptr& trajectory)
|
||||
{
|
||||
ze::ImuSimulator::Ptr imu;
|
||||
ze::ImuSimulator::Ptr
|
||||
loadImuSimulatorFromGflags(const ze::TrajectorySimulator::Ptr& trajectory) {
|
||||
ze::ImuSimulator::Ptr imu;
|
||||
|
||||
const ze::real_t gyr_bias_noise_sigma = 0.0000266;
|
||||
const ze::real_t acc_bias_noise_sigma = 0.000433;
|
||||
const ze::real_t gyr_noise_sigma = 0.000186;
|
||||
const ze::real_t acc_noise_sigma = 0.00186;
|
||||
const uint32_t imu_bandwidth_hz = 200;
|
||||
const ze::real_t gravity_magnitude = 9.81;
|
||||
const ze::real_t gyr_bias_noise_sigma = 0.0000266;
|
||||
const ze::real_t acc_bias_noise_sigma = 0.000433;
|
||||
const ze::real_t gyr_noise_sigma = 0.000186;
|
||||
const ze::real_t acc_noise_sigma = 0.00186;
|
||||
const uint32_t imu_bandwidth_hz = 200;
|
||||
const ze::real_t gravity_magnitude = 9.81;
|
||||
|
||||
ze::ImuBiasSimulator::Ptr bias;
|
||||
try
|
||||
{
|
||||
VLOG(1) << "Initialize bias ...";
|
||||
bias = std::make_shared<ze::ContinuousBiasSimulator>(
|
||||
ze::Vector3::Constant(gyr_bias_noise_sigma),
|
||||
ze::Vector3::Constant(acc_bias_noise_sigma),
|
||||
trajectory->start(),
|
||||
trajectory->end(),
|
||||
100); // Results in malloc: (trajectory->end() - trajectory->start()) * imu_bandwidth_hz);
|
||||
VLOG(1) << "done.";
|
||||
}
|
||||
catch (const std::bad_alloc& e)
|
||||
{
|
||||
LOG(FATAL) << "Could not create bias because number of samples is too high."
|
||||
<< " Allocation failed: " << e.what();
|
||||
}
|
||||
ze::ImuBiasSimulator::Ptr bias;
|
||||
try {
|
||||
VLOG(1) << "Initialize bias ...";
|
||||
bias = std::make_shared<ze::ContinuousBiasSimulator>(
|
||||
ze::Vector3::Constant(gyr_bias_noise_sigma),
|
||||
ze::Vector3::Constant(acc_bias_noise_sigma),
|
||||
trajectory->start(),
|
||||
trajectory->end(),
|
||||
100
|
||||
); // Results in malloc: (trajectory->end() - trajectory->start()) *
|
||||
// imu_bandwidth_hz);
|
||||
VLOG(1) << "done.";
|
||||
} catch (const std::bad_alloc& e) {
|
||||
LOG(FATAL
|
||||
) << "Could not create bias because number of samples is too high."
|
||||
<< " Allocation failed: " << e.what();
|
||||
}
|
||||
|
||||
VLOG(1) << "Initialize IMU ...";
|
||||
imu = std::make_shared<ze::ImuSimulator>(
|
||||
trajectory,
|
||||
bias,
|
||||
ze::RandomVectorSampler<3>::sigmas(ze::Vector3::Constant(acc_noise_sigma)),
|
||||
ze::RandomVectorSampler<3>::sigmas(ze::Vector3::Constant(gyr_noise_sigma)),
|
||||
imu_bandwidth_hz,
|
||||
imu_bandwidth_hz,
|
||||
gravity_magnitude);
|
||||
VLOG(1) << "done.";
|
||||
VLOG(1) << "Initialize IMU ...";
|
||||
imu = std::make_shared<ze::ImuSimulator>(
|
||||
trajectory,
|
||||
bias,
|
||||
ze::RandomVectorSampler<3>::sigmas(
|
||||
ze::Vector3::Constant(acc_noise_sigma)
|
||||
),
|
||||
ze::RandomVectorSampler<3>::sigmas(
|
||||
ze::Vector3::Constant(gyr_noise_sigma)
|
||||
),
|
||||
imu_bandwidth_hz,
|
||||
imu_bandwidth_hz,
|
||||
gravity_magnitude
|
||||
);
|
||||
VLOG(1) << "done.";
|
||||
|
||||
return imu;
|
||||
}
|
||||
return imu;
|
||||
}
|
||||
|
||||
} // namespace event_camera_simulator
|
||||
|
||||
|
@ -2,235 +2,272 @@
|
||||
#include <ze/common/csv_trajectory.hpp>
|
||||
#include <ze/common/logging.hpp>
|
||||
|
||||
DEFINE_int32(trajectory_type, 0, " 0: Random spline trajectory, 1: Load trajectory from CSV file");
|
||||
DEFINE_int32(
|
||||
trajectory_type,
|
||||
0,
|
||||
" 0: Random spline trajectory, 1: Load trajectory from CSV file"
|
||||
);
|
||||
|
||||
DEFINE_double(trajectory_length_s, 100.0,
|
||||
"Length of the trajectory, in seconds"
|
||||
"(used when the trajectory type is random spline)");
|
||||
DEFINE_double(
|
||||
trajectory_length_s,
|
||||
100.0,
|
||||
"Length of the trajectory, in seconds"
|
||||
"(used when the trajectory type is random spline)"
|
||||
);
|
||||
|
||||
DEFINE_int32(trajectory_spline_order, 5,
|
||||
"Spline order of the trajectory");
|
||||
DEFINE_int32(trajectory_spline_order, 5, "Spline order of the trajectory");
|
||||
|
||||
DEFINE_double(trajectory_sampling_frequency_hz, 5,
|
||||
"Sampling frequency of the spline trajectory, i.e."
|
||||
"number of random poses generated per second along the trajectory");
|
||||
DEFINE_double(
|
||||
trajectory_sampling_frequency_hz,
|
||||
5,
|
||||
"Sampling frequency of the spline trajectory, i.e."
|
||||
"number of random poses generated per second along the trajectory"
|
||||
);
|
||||
|
||||
DEFINE_int32(trajectory_num_spline_segments, 100,
|
||||
"Number of spline segments used for the trajectory");
|
||||
DEFINE_int32(
|
||||
trajectory_num_spline_segments,
|
||||
100,
|
||||
"Number of spline segments used for the trajectory"
|
||||
);
|
||||
|
||||
DEFINE_double(trajectory_lambda, 0.1,
|
||||
"Smoothing factor for the spline trajectories."
|
||||
"Low value = less smooth, high value = more smooth");
|
||||
DEFINE_double(
|
||||
trajectory_lambda,
|
||||
0.1,
|
||||
"Smoothing factor for the spline trajectories."
|
||||
"Low value = less smooth, high value = more smooth"
|
||||
);
|
||||
|
||||
DEFINE_double(trajectory_multiplier_x, 1.0,
|
||||
"Scaling factor for the X camera axis");
|
||||
DEFINE_double(
|
||||
trajectory_multiplier_x, 1.0, "Scaling factor for the X camera axis"
|
||||
);
|
||||
|
||||
DEFINE_double(trajectory_multiplier_y, 1.0,
|
||||
"Scaling factor for the y camera axis");
|
||||
DEFINE_double(
|
||||
trajectory_multiplier_y, 1.0, "Scaling factor for the y camera axis"
|
||||
);
|
||||
|
||||
DEFINE_double(trajectory_multiplier_z, 1.0,
|
||||
"Scaling factor for the z camera axis");
|
||||
DEFINE_double(
|
||||
trajectory_multiplier_z, 1.0, "Scaling factor for the z camera axis"
|
||||
);
|
||||
|
||||
DEFINE_double(trajectory_multiplier_wx, 1.0,
|
||||
"Scaling factor for the x orientation axis");
|
||||
DEFINE_double(
|
||||
trajectory_multiplier_wx, 1.0, "Scaling factor for the x orientation axis"
|
||||
);
|
||||
|
||||
DEFINE_double(trajectory_multiplier_wy, 1.0,
|
||||
"Scaling factor for the y orientation axis");
|
||||
DEFINE_double(
|
||||
trajectory_multiplier_wy, 1.0, "Scaling factor for the y orientation axis"
|
||||
);
|
||||
|
||||
DEFINE_double(trajectory_multiplier_wz, 1.0,
|
||||
"Scaling factor for the z orientation axis");
|
||||
DEFINE_double(
|
||||
trajectory_multiplier_wz, 1.0, "Scaling factor for the z orientation axis"
|
||||
);
|
||||
|
||||
DEFINE_double(trajectory_offset_x, 0.0,
|
||||
"Offset for the X camera axis");
|
||||
DEFINE_double(trajectory_offset_x, 0.0, "Offset for the X camera axis");
|
||||
|
||||
DEFINE_double(trajectory_offset_y, 0.0,
|
||||
"Offset for the y camera axis");
|
||||
DEFINE_double(trajectory_offset_y, 0.0, "Offset for the y camera axis");
|
||||
|
||||
DEFINE_double(trajectory_offset_z, 0.0,
|
||||
"Offset for the z camera axis");
|
||||
DEFINE_double(trajectory_offset_z, 0.0, "Offset for the z camera axis");
|
||||
|
||||
DEFINE_double(trajectory_offset_wx, 0.0,
|
||||
"Offset for the x orientation axis");
|
||||
DEFINE_double(trajectory_offset_wx, 0.0, "Offset for the x orientation axis");
|
||||
|
||||
DEFINE_double(trajectory_offset_wy, 0.0,
|
||||
"Offset for the y orientation axis");
|
||||
DEFINE_double(trajectory_offset_wy, 0.0, "Offset for the y orientation axis");
|
||||
|
||||
DEFINE_double(trajectory_offset_wz, 0.0,
|
||||
"Offset for the z orientation axis");
|
||||
DEFINE_double(trajectory_offset_wz, 0.0, "Offset for the z orientation axis");
|
||||
|
||||
DEFINE_string(trajectory_csv_file, "",
|
||||
"CSV file containing the trajectory");
|
||||
DEFINE_string(trajectory_csv_file, "", "CSV file containing the trajectory");
|
||||
|
||||
DEFINE_int32(trajectory_dynamic_objects_type, 1, " 0: Random spline trajectory, 1: Load trajectory from CSV file");
|
||||
DEFINE_int32(
|
||||
trajectory_dynamic_objects_type,
|
||||
1,
|
||||
" 0: Random spline trajectory, 1: Load trajectory from CSV file"
|
||||
);
|
||||
|
||||
DEFINE_int32(trajectory_dynamic_objects_spline_order, 5,
|
||||
"Spline order of the trajectory");
|
||||
DEFINE_int32(
|
||||
trajectory_dynamic_objects_spline_order, 5, "Spline order of the trajectory"
|
||||
);
|
||||
|
||||
DEFINE_int32(trajectory_dynamic_objects_num_spline_segments, 100,
|
||||
"Number of spline segments used for the trajectory");
|
||||
DEFINE_int32(
|
||||
trajectory_dynamic_objects_num_spline_segments,
|
||||
100,
|
||||
"Number of spline segments used for the trajectory"
|
||||
);
|
||||
|
||||
DEFINE_double(trajectory_dynamic_objects_lambda, 0.1,
|
||||
"Smoothing factor for the spline trajectories."
|
||||
"Low value = less smooth, high value = more smooth");
|
||||
DEFINE_double(
|
||||
trajectory_dynamic_objects_lambda,
|
||||
0.1,
|
||||
"Smoothing factor for the spline trajectories."
|
||||
"Low value = less smooth, high value = more smooth"
|
||||
);
|
||||
|
||||
DEFINE_string(trajectory_dynamic_objects_csv_dir, "",
|
||||
"Directory containing CSV file of trajectory for dynamic objects");
|
||||
DEFINE_string(
|
||||
trajectory_dynamic_objects_csv_dir,
|
||||
"",
|
||||
"Directory containing CSV file of trajectory for dynamic objects"
|
||||
);
|
||||
|
||||
DEFINE_string(trajectory_dynamic_objects_csv_file, "",
|
||||
"CSV file containing the trajectory");
|
||||
DEFINE_string(
|
||||
trajectory_dynamic_objects_csv_file,
|
||||
"",
|
||||
"CSV file containing the trajectory"
|
||||
);
|
||||
|
||||
namespace event_camera_simulator {
|
||||
|
||||
std::tuple<ze::TrajectorySimulator::Ptr, std::vector<ze::TrajectorySimulator::Ptr>> loadTrajectorySimulatorFromGflags()
|
||||
{
|
||||
ze::TrajectorySimulator::Ptr trajectory;
|
||||
std::tuple<
|
||||
ze::TrajectorySimulator::Ptr,
|
||||
std::vector<ze::TrajectorySimulator::Ptr>>
|
||||
loadTrajectorySimulatorFromGflags() {
|
||||
ze::TrajectorySimulator::Ptr trajectory;
|
||||
|
||||
std::vector<ze::TrajectorySimulator::Ptr> trajectories_dynamic_objects;
|
||||
bool dynamic_object = false;
|
||||
std::vector<ze::TrajectorySimulator::Ptr> trajectories_dynamic_objects;
|
||||
bool dynamic_object = false;
|
||||
|
||||
size_t p_start, p_end;
|
||||
p_start = 0;
|
||||
while(1)
|
||||
{
|
||||
int trajectory_type;
|
||||
if (dynamic_object)
|
||||
{
|
||||
trajectory_type = FLAGS_trajectory_dynamic_objects_type;
|
||||
if (trajectory_type != 1)
|
||||
{
|
||||
LOG(FATAL) << "Only supporting trajectories of type 1 for dynamic objects!";
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
trajectory_type = FLAGS_trajectory_type;
|
||||
}
|
||||
|
||||
// set path for dynamics objects
|
||||
std::string csv_path;
|
||||
bool should_break = false;
|
||||
|
||||
if (dynamic_object)
|
||||
{
|
||||
if ((p_end = FLAGS_trajectory_dynamic_objects_csv_file.find(";",p_start)) != std::string::npos)
|
||||
{
|
||||
csv_path = FLAGS_trajectory_dynamic_objects_csv_dir + "/" + FLAGS_trajectory_dynamic_objects_csv_file.substr(p_start, p_end - p_start);
|
||||
|
||||
p_start = p_end + 1;
|
||||
}
|
||||
else
|
||||
{
|
||||
csv_path = FLAGS_trajectory_dynamic_objects_csv_dir + "/" + FLAGS_trajectory_dynamic_objects_csv_file.substr(p_start, p_end - p_start);
|
||||
should_break = true;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
csv_path = FLAGS_trajectory_csv_file;
|
||||
}
|
||||
|
||||
switch (trajectory_type)
|
||||
{
|
||||
case 0: // Random spline
|
||||
{
|
||||
std::shared_ptr<ze::BSplinePoseMinimalRotationVector> pbs =
|
||||
std::make_shared<ze::BSplinePoseMinimalRotationVector>(FLAGS_trajectory_spline_order);
|
||||
ze::MatrixX poses;
|
||||
ze::VectorX times = ze::VectorX::LinSpaced(FLAGS_trajectory_sampling_frequency_hz * FLAGS_trajectory_length_s,
|
||||
0,
|
||||
FLAGS_trajectory_length_s);
|
||||
poses.resize(6, times.size());
|
||||
poses.setRandom();
|
||||
poses.row(0) *= FLAGS_trajectory_multiplier_x;
|
||||
poses.row(1) *= FLAGS_trajectory_multiplier_y;
|
||||
poses.row(2) *= FLAGS_trajectory_multiplier_z;
|
||||
poses.row(3) *= FLAGS_trajectory_multiplier_wx;
|
||||
poses.row(4) *= FLAGS_trajectory_multiplier_wy;
|
||||
poses.row(5) *= FLAGS_trajectory_multiplier_wz;
|
||||
poses.row(0).array() += FLAGS_trajectory_offset_x;
|
||||
poses.row(1).array() += FLAGS_trajectory_offset_y;
|
||||
poses.row(2).array() += FLAGS_trajectory_offset_z;
|
||||
poses.row(3).array() += FLAGS_trajectory_offset_wx;
|
||||
poses.row(4).array() += FLAGS_trajectory_offset_wy;
|
||||
poses.row(5).array() += FLAGS_trajectory_offset_wz;
|
||||
pbs->initPoseSpline3(times, poses, FLAGS_trajectory_num_spline_segments, FLAGS_trajectory_lambda);
|
||||
trajectory.reset(new ze::SplineTrajectorySimulator(pbs));
|
||||
break;
|
||||
}
|
||||
case 1: // Load from CSV file
|
||||
{
|
||||
// Create trajectory:
|
||||
ze::PoseSeries pose_series;
|
||||
|
||||
LOG(INFO) << "Reading trajectory from CSV file: " << csv_path;
|
||||
pose_series.load(csv_path);
|
||||
|
||||
ze::StampedTransformationVector poses = pose_series.getStampedTransformationVector();
|
||||
|
||||
// Set start time of trajectory to zero.
|
||||
const int64_t offset = poses.at(0).first;
|
||||
for (ze::StampedTransformation& it : poses)
|
||||
{
|
||||
it.first -= offset;
|
||||
size_t p_start, p_end;
|
||||
p_start = 0;
|
||||
while (1) {
|
||||
int trajectory_type;
|
||||
if (dynamic_object) {
|
||||
trajectory_type = FLAGS_trajectory_dynamic_objects_type;
|
||||
if (trajectory_type != 1) {
|
||||
LOG(FATAL) << "Only supporting trajectories of type 1 for "
|
||||
"dynamic objects!";
|
||||
}
|
||||
} else {
|
||||
trajectory_type = FLAGS_trajectory_type;
|
||||
}
|
||||
|
||||
LOG(INFO) << "Initializing spline from trajectory (this may take some sime)...";
|
||||
// set path for dynamics objects
|
||||
std::string csv_path;
|
||||
bool should_break = false;
|
||||
|
||||
int spline_order, num_spline_segments;
|
||||
double lambda;
|
||||
if (dynamic_object)
|
||||
{
|
||||
spline_order = FLAGS_trajectory_dynamic_objects_spline_order;
|
||||
num_spline_segments = FLAGS_trajectory_dynamic_objects_num_spline_segments;
|
||||
lambda = FLAGS_trajectory_dynamic_objects_lambda;
|
||||
}
|
||||
else
|
||||
{
|
||||
spline_order = FLAGS_trajectory_spline_order;
|
||||
num_spline_segments = FLAGS_trajectory_num_spline_segments;
|
||||
lambda = FLAGS_trajectory_lambda;
|
||||
if (dynamic_object) {
|
||||
if ((p_end = FLAGS_trajectory_dynamic_objects_csv_file
|
||||
.find(";", p_start))
|
||||
!= std::string::npos) {
|
||||
csv_path = FLAGS_trajectory_dynamic_objects_csv_dir + "/"
|
||||
+ FLAGS_trajectory_dynamic_objects_csv_file.substr(
|
||||
p_start,
|
||||
p_end - p_start
|
||||
);
|
||||
|
||||
p_start = p_end + 1;
|
||||
} else {
|
||||
csv_path = FLAGS_trajectory_dynamic_objects_csv_dir + "/"
|
||||
+ FLAGS_trajectory_dynamic_objects_csv_file.substr(
|
||||
p_start,
|
||||
p_end - p_start
|
||||
);
|
||||
should_break = true;
|
||||
}
|
||||
} else {
|
||||
csv_path = FLAGS_trajectory_csv_file;
|
||||
}
|
||||
|
||||
std::shared_ptr<ze::BSplinePoseMinimalRotationVector> bs =
|
||||
std::make_shared<ze::BSplinePoseMinimalRotationVector>(spline_order);
|
||||
bs->initPoseSplinePoses(poses, num_spline_segments, lambda);
|
||||
if (dynamic_object)
|
||||
switch (trajectory_type) {
|
||||
case 0: // Random spline
|
||||
{
|
||||
trajectories_dynamic_objects.push_back(std::make_shared<ze::SplineTrajectorySimulator>(bs));
|
||||
std::shared_ptr<ze::BSplinePoseMinimalRotationVector> pbs =
|
||||
std::make_shared<ze::BSplinePoseMinimalRotationVector>(
|
||||
FLAGS_trajectory_spline_order
|
||||
);
|
||||
ze::MatrixX poses;
|
||||
ze::VectorX times = ze::VectorX::LinSpaced(
|
||||
FLAGS_trajectory_sampling_frequency_hz
|
||||
* FLAGS_trajectory_length_s,
|
||||
0,
|
||||
FLAGS_trajectory_length_s
|
||||
);
|
||||
poses.resize(6, times.size());
|
||||
poses.setRandom();
|
||||
poses.row(0) *= FLAGS_trajectory_multiplier_x;
|
||||
poses.row(1) *= FLAGS_trajectory_multiplier_y;
|
||||
poses.row(2) *= FLAGS_trajectory_multiplier_z;
|
||||
poses.row(3) *= FLAGS_trajectory_multiplier_wx;
|
||||
poses.row(4) *= FLAGS_trajectory_multiplier_wy;
|
||||
poses.row(5) *= FLAGS_trajectory_multiplier_wz;
|
||||
poses.row(0).array() += FLAGS_trajectory_offset_x;
|
||||
poses.row(1).array() += FLAGS_trajectory_offset_y;
|
||||
poses.row(2).array() += FLAGS_trajectory_offset_z;
|
||||
poses.row(3).array() += FLAGS_trajectory_offset_wx;
|
||||
poses.row(4).array() += FLAGS_trajectory_offset_wy;
|
||||
poses.row(5).array() += FLAGS_trajectory_offset_wz;
|
||||
pbs->initPoseSpline3(
|
||||
times,
|
||||
poses,
|
||||
FLAGS_trajectory_num_spline_segments,
|
||||
FLAGS_trajectory_lambda
|
||||
);
|
||||
trajectory.reset(new ze::SplineTrajectorySimulator(pbs));
|
||||
break;
|
||||
}
|
||||
else
|
||||
case 1: // Load from CSV file
|
||||
{
|
||||
trajectory = std::make_shared<ze::SplineTrajectorySimulator>(bs);
|
||||
// Create trajectory:
|
||||
ze::PoseSeries pose_series;
|
||||
|
||||
LOG(INFO) << "Reading trajectory from CSV file: " << csv_path;
|
||||
pose_series.load(csv_path);
|
||||
|
||||
ze::StampedTransformationVector poses =
|
||||
pose_series.getStampedTransformationVector();
|
||||
|
||||
// Set start time of trajectory to zero.
|
||||
const int64_t offset = poses.at(0).first;
|
||||
for (ze::StampedTransformation& it : poses)
|
||||
it.first -= offset;
|
||||
|
||||
LOG(INFO) << "Initializing spline from trajectory (this may "
|
||||
"take some sime)...";
|
||||
|
||||
int spline_order, num_spline_segments;
|
||||
double lambda;
|
||||
if (dynamic_object) {
|
||||
spline_order =
|
||||
FLAGS_trajectory_dynamic_objects_spline_order;
|
||||
num_spline_segments =
|
||||
FLAGS_trajectory_dynamic_objects_num_spline_segments;
|
||||
lambda = FLAGS_trajectory_dynamic_objects_lambda;
|
||||
} else {
|
||||
spline_order = FLAGS_trajectory_spline_order;
|
||||
num_spline_segments = FLAGS_trajectory_num_spline_segments;
|
||||
lambda = FLAGS_trajectory_lambda;
|
||||
}
|
||||
|
||||
std::shared_ptr<ze::BSplinePoseMinimalRotationVector> bs =
|
||||
std::make_shared<ze::BSplinePoseMinimalRotationVector>(
|
||||
spline_order
|
||||
);
|
||||
bs->initPoseSplinePoses(poses, num_spline_segments, lambda);
|
||||
if (dynamic_object) {
|
||||
trajectories_dynamic_objects.push_back(
|
||||
std::make_shared<ze::SplineTrajectorySimulator>(bs)
|
||||
);
|
||||
} else {
|
||||
trajectory =
|
||||
std::make_shared<ze::SplineTrajectorySimulator>(bs);
|
||||
}
|
||||
LOG(INFO) << "Done!";
|
||||
break;
|
||||
}
|
||||
LOG(INFO) << "Done!";
|
||||
break;
|
||||
}
|
||||
default:
|
||||
{
|
||||
LOG(FATAL) << "Trajectory type is not known.";
|
||||
break;
|
||||
default: {
|
||||
LOG(FATAL) << "Trajectory type is not known.";
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (!dynamic_object) {
|
||||
if (!FLAGS_trajectory_dynamic_objects_csv_dir.empty()
|
||||
&& !FLAGS_trajectory_dynamic_objects_csv_file.empty()) {
|
||||
dynamic_object = true;
|
||||
} else {
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (should_break)
|
||||
break;
|
||||
}
|
||||
|
||||
return std::make_tuple(trajectory, trajectories_dynamic_objects);
|
||||
}
|
||||
|
||||
if (!dynamic_object)
|
||||
{
|
||||
if (!FLAGS_trajectory_dynamic_objects_csv_dir.empty() && !FLAGS_trajectory_dynamic_objects_csv_file.empty())
|
||||
{
|
||||
dynamic_object = true;
|
||||
}
|
||||
else
|
||||
{
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (should_break)
|
||||
{
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
return std::make_tuple(trajectory, trajectories_dynamic_objects);
|
||||
}
|
||||
|
||||
} // namespace event_camera_simulator
|
||||
|
@ -1,77 +1,75 @@
|
||||
#pragma once
|
||||
|
||||
#include <boost/algorithm/string/predicate.hpp>
|
||||
#include <boost/asio.hpp>
|
||||
#include <boost/format.hpp>
|
||||
#include <boost/algorithm/string/predicate.hpp>
|
||||
|
||||
#include <string>
|
||||
#include <chrono>
|
||||
#include <functional>
|
||||
|
||||
#include <iostream>
|
||||
#include <istream>
|
||||
#include <ostream>
|
||||
|
||||
#include <chrono>
|
||||
#include <thread>
|
||||
|
||||
#include <opencv2/core/core.hpp>
|
||||
#include <ostream>
|
||||
#include <string>
|
||||
#include <thread>
|
||||
|
||||
namespace event_camera_simulator {
|
||||
|
||||
using boost::asio::ip::tcp;
|
||||
using boost::asio::ip::tcp;
|
||||
|
||||
struct CameraData {
|
||||
uint32_t id;
|
||||
double_t pitch;
|
||||
double_t yaw;
|
||||
double_t roll;
|
||||
double_t x;
|
||||
double_t y;
|
||||
double_t z;
|
||||
};
|
||||
struct CameraData {
|
||||
uint32_t id;
|
||||
double_t pitch;
|
||||
double_t yaw;
|
||||
double_t roll;
|
||||
double_t x;
|
||||
double_t y;
|
||||
double_t z;
|
||||
};
|
||||
|
||||
class UnrealCvClient {
|
||||
public:
|
||||
UnrealCvClient(std::string host, std::string port);
|
||||
~UnrealCvClient();
|
||||
|
||||
class UnrealCvClient {
|
||||
public:
|
||||
UnrealCvClient(std::string host, std::string port);
|
||||
~UnrealCvClient();
|
||||
void saveImage(uint32_t camid, std::string path);
|
||||
cv::Mat getImage(uint32_t camid);
|
||||
cv::Mat getDepth(uint32_t camid);
|
||||
void setCamera(const CameraData& camera);
|
||||
void setCameraFOV(float hfov_deg);
|
||||
void setCameraSize(int width, int height);
|
||||
|
||||
void saveImage(uint32_t camid, std::string path);
|
||||
cv::Mat getImage(uint32_t camid);
|
||||
cv::Mat getDepth(uint32_t camid);
|
||||
void setCamera(const CameraData & camera);
|
||||
void setCameraFOV(float hfov_deg);
|
||||
void setCameraSize(int width, int height);
|
||||
protected:
|
||||
void sendCommand(std::string command);
|
||||
|
||||
protected:
|
||||
template <typename Result>
|
||||
Result sendCommand(
|
||||
std::string command,
|
||||
std::function<Result(std::istream&, uint32_t)> mapf
|
||||
);
|
||||
|
||||
void sendCommand(std::string command);
|
||||
void send(std::string msg, uint32_t counter);
|
||||
|
||||
template<typename Result>
|
||||
Result sendCommand(std::string command, std::function<Result(std::istream&, uint32_t)> mapf);
|
||||
template <typename Result>
|
||||
Result receive(std::function<Result(std::istream&, uint32_t)> parser);
|
||||
|
||||
void send(std::string msg, uint32_t counter);
|
||||
// must stand before socket_ because of c++ initialization order
|
||||
boost::asio::io_service io_service_;
|
||||
tcp::socket socket_;
|
||||
mutable uint32_t counter_;
|
||||
uint32_t delay_;
|
||||
boost::format angular_format_;
|
||||
|
||||
template<typename Result>
|
||||
Result receive(std::function<Result(std::istream&, uint32_t)> parser);
|
||||
private:
|
||||
void sleep(uint32_t delay);
|
||||
void handleError(boost::system::error_code ec);
|
||||
std::string istreamToString(std::istream& stream, uint32_t size);
|
||||
|
||||
//must stand before socket_ because of c++ initialization order
|
||||
boost::asio::io_service io_service_;
|
||||
tcp::socket socket_;
|
||||
mutable uint32_t counter_;
|
||||
uint32_t delay_;
|
||||
boost::format angular_format_;
|
||||
|
||||
private:
|
||||
void sleep(uint32_t delay);
|
||||
void handleError(boost::system::error_code ec);
|
||||
std::string istreamToString(std::istream& stream, uint32_t size);
|
||||
|
||||
void parse_npy_header(unsigned char* buffer,
|
||||
size_t& word_size,
|
||||
std::vector<size_t>& shape,
|
||||
bool& fortran_order);
|
||||
|
||||
};
|
||||
void parse_npy_header(
|
||||
unsigned char* buffer,
|
||||
size_t& word_size,
|
||||
std::vector<size_t>& shape,
|
||||
bool& fortran_order
|
||||
);
|
||||
};
|
||||
|
||||
} // namespace event_camera_simulator
|
||||
|
@ -1,368 +1,389 @@
|
||||
#include <esim/unrealcv_bridge/unrealcv_bridge.hpp>
|
||||
#include <opencv2/imgcodecs/imgcodecs.hpp>
|
||||
#include <glog/logging.h>
|
||||
|
||||
#include <cmath>
|
||||
#include <esim/unrealcv_bridge/unrealcv_bridge.hpp>
|
||||
#include <glog/logging.h>
|
||||
#include <opencv2/imgcodecs/imgcodecs.hpp>
|
||||
#include <regex>
|
||||
|
||||
namespace event_camera_simulator {
|
||||
|
||||
using boost::asio::ip::tcp;
|
||||
using boost::asio::ip::tcp;
|
||||
|
||||
// from: https://www.boost.org/doc/libs/1_47_0/doc/html/boost_asio/reference/connect/overload6.html
|
||||
struct unrealcv_server_connect_condition
|
||||
{
|
||||
template <typename Iterator>
|
||||
Iterator operator()(
|
||||
const boost::system::error_code& ec,
|
||||
Iterator next)
|
||||
{
|
||||
if(ec)
|
||||
{
|
||||
LOG(ERROR) << ec.message();
|
||||
}
|
||||
LOG(INFO) << "Trying: " << next->endpoint();
|
||||
return next;
|
||||
}
|
||||
};
|
||||
// from:
|
||||
// https://www.boost.org/doc/libs/1_47_0/doc/html/boost_asio/reference/connect/overload6.html
|
||||
struct unrealcv_server_connect_condition {
|
||||
template <typename Iterator>
|
||||
Iterator
|
||||
operator()(const boost::system::error_code& ec, Iterator next) {
|
||||
if (ec)
|
||||
LOG(ERROR) << ec.message();
|
||||
LOG(INFO) << "Trying: " << next->endpoint();
|
||||
return next;
|
||||
}
|
||||
};
|
||||
|
||||
UnrealCvClient::UnrealCvClient(std::string host, std::string port)
|
||||
: io_service_(),
|
||||
socket_(io_service_),
|
||||
counter_(0),
|
||||
delay_(30){
|
||||
UnrealCvClient::UnrealCvClient(std::string host, std::string port)
|
||||
: io_service_(),
|
||||
socket_(io_service_),
|
||||
counter_(0),
|
||||
delay_(30) {
|
||||
tcp::resolver resolver(io_service_);
|
||||
tcp::resolver::query query(host, port);
|
||||
tcp::resolver::iterator endpoint_iterator = resolver.resolve(query);
|
||||
|
||||
tcp::resolver resolver(io_service_);
|
||||
tcp::resolver::query query(host, port);
|
||||
tcp::resolver::iterator endpoint_iterator = resolver.resolve(query);
|
||||
boost::system::error_code ec;
|
||||
boost::asio::connect(
|
||||
socket_,
|
||||
endpoint_iterator,
|
||||
unrealcv_server_connect_condition(),
|
||||
ec
|
||||
);
|
||||
if (ec) {
|
||||
LOG(FATAL) << "Could not connect to UnrealCV server";
|
||||
return;
|
||||
}
|
||||
sleep(500); // long sleep to initiate
|
||||
|
||||
boost::system::error_code ec;
|
||||
boost::asio::connect(socket_, endpoint_iterator, unrealcv_server_connect_condition(), ec);
|
||||
if(ec)
|
||||
{
|
||||
LOG(FATAL) << "Could not connect to UnrealCV server";
|
||||
return;
|
||||
}
|
||||
sleep(500); // long sleep to initiate
|
||||
// receive the first "we are connected" string
|
||||
receive<std::string>(
|
||||
[this](std::istream& stream, uint32_t size) -> std::string {
|
||||
return this->istreamToString(stream, size);
|
||||
}
|
||||
);
|
||||
|
||||
// receive the first "we are connected" string
|
||||
receive<std::string>([this] (std::istream& stream, uint32_t size) -> std::string {
|
||||
return this->istreamToString(stream, size);
|
||||
});
|
||||
|
||||
sleep(delay_);
|
||||
sendCommand("vrun r.AmbientOcclusionLevels 0");
|
||||
sendCommand("vrun r.LensFlareQuality 0");
|
||||
sendCommand("vrun r.DefaultFeature.AntiAliasing 2");
|
||||
sendCommand("vrun r.DefaultFeature.MotionBlur 0");
|
||||
sendCommand("vrun r.PostProcessAAQuality 6");
|
||||
}
|
||||
|
||||
UnrealCvClient::~UnrealCvClient() {
|
||||
socket_.close();
|
||||
}
|
||||
|
||||
void UnrealCvClient::saveImage(uint32_t camid, std::string path)
|
||||
{
|
||||
std::string req = (boost::format("vget /camera/%i/lit %s") % camid % path).str();
|
||||
sendCommand(req);
|
||||
}
|
||||
|
||||
cv::Mat UnrealCvClient::getImage(uint32_t camid)
|
||||
{
|
||||
std::string req = (boost::format("vget /camera/%i/lit png") % camid).str();
|
||||
|
||||
return sendCommand<cv::Mat>(req, [](std::istream& stream, uint32_t size){
|
||||
std::vector<char> data(size);
|
||||
stream.read(data.data(), size);
|
||||
cv::Mat matrixPng = cv::imdecode(cv::Mat(data), 1);
|
||||
return matrixPng.clone();
|
||||
});
|
||||
}
|
||||
|
||||
cv::Mat UnrealCvClient::getDepth(uint32_t camid)
|
||||
{
|
||||
std::string req = (boost::format("vget /camera/%i/depth npy") % camid).str();
|
||||
|
||||
return sendCommand<cv::Mat>(req, [this](std::istream& stream, uint32_t size){
|
||||
|
||||
std::vector<char> data(size);
|
||||
stream.read(data.data(), size);
|
||||
unsigned char* buffer = (unsigned char *)data.data();
|
||||
|
||||
/*
|
||||
* Gather data from the header
|
||||
*/
|
||||
std::vector<size_t> img_dims; //if appending, the shape of existing + new data
|
||||
size_t word_size;
|
||||
bool fortran_order;
|
||||
parse_npy_header(buffer, word_size, img_dims, fortran_order);
|
||||
|
||||
// https://docs.scipy.org/doc/numpy/neps/npy-format.html
|
||||
std::string npy_magic(reinterpret_cast<char*>(buffer),6);
|
||||
uint8_t major_version = *reinterpret_cast<uint8_t*>(buffer+6);
|
||||
uint8_t minor_version = *reinterpret_cast<uint8_t*>(buffer+7);
|
||||
uint16_t header_str_len = *reinterpret_cast<uint16_t*>(buffer+8);
|
||||
std::string header(reinterpret_cast<char*>(buffer+9),header_str_len);
|
||||
|
||||
uint16_t header_total_len = 10 + header_str_len;
|
||||
uint32_t data_length = data.size() - header_total_len;
|
||||
uint32_t num_pixel = img_dims.at(0) * img_dims.at(1);
|
||||
|
||||
/*
|
||||
* Ensure that the data is okay
|
||||
*/
|
||||
if(!(major_version == 1 &&
|
||||
minor_version == 0 &&
|
||||
npy_magic.find("NUMPY") != std::string::npos)){
|
||||
throw std::runtime_error("Npy header data not supported");
|
||||
sleep(delay_);
|
||||
sendCommand("vrun r.AmbientOcclusionLevels 0");
|
||||
sendCommand("vrun r.LensFlareQuality 0");
|
||||
sendCommand("vrun r.DefaultFeature.AntiAliasing 2");
|
||||
sendCommand("vrun r.DefaultFeature.MotionBlur 0");
|
||||
sendCommand("vrun r.PostProcessAAQuality 6");
|
||||
}
|
||||
|
||||
if(!(data_length == (num_pixel * sizeof(float_t)))) {
|
||||
throw std::runtime_error("Npy array data shape does not match the image size");
|
||||
UnrealCvClient::~UnrealCvClient() {
|
||||
socket_.close();
|
||||
}
|
||||
|
||||
/*
|
||||
* Read and convert the data
|
||||
*/
|
||||
cv::Mat matrix_f32 = cv::Mat(img_dims.at(0), img_dims.at(1),
|
||||
CV_32F, buffer + header_total_len).clone();
|
||||
|
||||
return matrix_f32;
|
||||
|
||||
});
|
||||
}
|
||||
|
||||
|
||||
void UnrealCvClient::setCamera(const CameraData & camera)
|
||||
{
|
||||
std::string cam_pose_s = (boost::format("vset /camera/%i/pose %.5f %.5f %.5f %.5f %.5f %.5f") %
|
||||
camera.id %
|
||||
camera.x %
|
||||
camera.y %
|
||||
camera.z %
|
||||
camera.pitch %
|
||||
camera.yaw %
|
||||
camera.roll).str();
|
||||
|
||||
sendCommand(cam_pose_s);
|
||||
}
|
||||
|
||||
void UnrealCvClient::setCameraSize(int width, int height)
|
||||
{
|
||||
VLOG(1) << "Setting the camera size to: " << width << "x" << height;
|
||||
std::string req_size = (boost::format("vrun r.setres %dx%d") %
|
||||
width %
|
||||
height).str();
|
||||
sendCommand(req_size);
|
||||
}
|
||||
|
||||
void UnrealCvClient::setCameraFOV(float hfov_deg)
|
||||
{
|
||||
VLOG(1) << "Setting the camera horizontal field of view to: " << hfov_deg << " deg";
|
||||
const int cam_id = 0;
|
||||
std::string req_fov = (boost::format("vset /camera/%i/horizontal_fieldofview %.5f") %
|
||||
cam_id %
|
||||
hfov_deg).str();
|
||||
sendCommand(req_fov);
|
||||
}
|
||||
|
||||
void UnrealCvClient::sendCommand(std::string command)
|
||||
{
|
||||
if (!(boost::starts_with(command, "vset") || boost::starts_with(command, "vrun"))) {
|
||||
throw std::runtime_error(
|
||||
"invalid command: command must start with vget or (vset, vrun)");
|
||||
}
|
||||
|
||||
uint32_t tmpc = counter_++;
|
||||
VLOG(1) << "SET:" << tmpc << " " << command;
|
||||
send(command, tmpc);
|
||||
sleep(delay_);
|
||||
|
||||
std::string result_prefix = std::to_string(tmpc) + ":";
|
||||
|
||||
/*
|
||||
* is set command: we never expect something else than "ok",
|
||||
* we do not use mapf
|
||||
*/
|
||||
|
||||
std::string result = receive<std::string>(
|
||||
[this] (std::istream& stream, uint32_t size) -> std::string {
|
||||
return this->istreamToString(stream, size);
|
||||
});
|
||||
|
||||
if (!boost::starts_with(result, result_prefix + "ok")) {
|
||||
throw std::runtime_error("response identifier is incorrect");
|
||||
} else {
|
||||
VLOG(1) << "GET:" << tmpc << " " << "ok";
|
||||
}
|
||||
|
||||
sleep(delay_);
|
||||
|
||||
}
|
||||
|
||||
template<typename Result>
|
||||
Result UnrealCvClient::sendCommand(std::string command, std::function<Result(std::istream&, uint32_t)> mapf)
|
||||
{
|
||||
if (!(boost::starts_with(command, "vget")))
|
||||
{
|
||||
throw std::runtime_error(
|
||||
"invalid command: command must start with vget or (vset, vrun)");
|
||||
}
|
||||
|
||||
uint32_t tmpc = counter_++;
|
||||
VLOG(1) << "SET:" << tmpc << " " << command;
|
||||
send(command, tmpc);
|
||||
sleep(delay_);
|
||||
|
||||
std::string result_prefix = std::to_string(tmpc) + ":";
|
||||
|
||||
/*
|
||||
* is get command: we expect a response that can
|
||||
* be a string or binary data
|
||||
*/
|
||||
|
||||
Result result = receive<Result>(
|
||||
[this, result_prefix, mapf] (std::istream& stream, uint32_t size) -> Result {
|
||||
|
||||
std::string prefix = istreamToString(stream, result_prefix.size());
|
||||
size-=result_prefix.size();
|
||||
|
||||
if(!boost::starts_with(prefix, result_prefix)) {
|
||||
throw std::runtime_error("response identifier is incorrect");
|
||||
void UnrealCvClient::saveImage(uint32_t camid, std::string path) {
|
||||
std::string req =
|
||||
(boost::format("vget /camera/%i/lit %s") % camid % path).str();
|
||||
sendCommand(req);
|
||||
}
|
||||
|
||||
return mapf(stream, size);
|
||||
});
|
||||
cv::Mat UnrealCvClient::getImage(uint32_t camid) {
|
||||
std::string req =
|
||||
(boost::format("vget /camera/%i/lit png") % camid).str();
|
||||
|
||||
sleep(delay_);
|
||||
return result;
|
||||
}
|
||||
return sendCommand<cv::Mat>(
|
||||
req,
|
||||
[](std::istream& stream, uint32_t size) {
|
||||
std::vector<char> data(size);
|
||||
stream.read(data.data(), size);
|
||||
cv::Mat matrixPng = cv::imdecode(cv::Mat(data), 1);
|
||||
return matrixPng.clone();
|
||||
}
|
||||
);
|
||||
}
|
||||
|
||||
void UnrealCvClient::send(std::string msg, uint32_t counter)
|
||||
{
|
||||
std::string out = std::to_string(counter) + ":" + msg;
|
||||
cv::Mat UnrealCvClient::getDepth(uint32_t camid) {
|
||||
std::string req =
|
||||
(boost::format("vget /camera/%i/depth npy") % camid).str();
|
||||
|
||||
uint32_t magic = 0x9E2B83C1;
|
||||
uint32_t size = out.length();
|
||||
return sendCommand<cv::Mat>(
|
||||
req,
|
||||
[this](std::istream& stream, uint32_t size) {
|
||||
std::vector<char> data(size);
|
||||
stream.read(data.data(), size);
|
||||
unsigned char* buffer = (unsigned char*) data.data();
|
||||
|
||||
boost::asio::streambuf request;
|
||||
std::ostream request_stream(&request);
|
||||
boost::system::error_code ec;
|
||||
/*
|
||||
* Gather data from the header
|
||||
*/
|
||||
std::vector<size_t>
|
||||
img_dims; // if appending, the shape of existing + new data
|
||||
size_t word_size;
|
||||
bool fortran_order;
|
||||
parse_npy_header(buffer, word_size, img_dims, fortran_order);
|
||||
|
||||
request_stream.write((char*) &magic, sizeof(magic));
|
||||
request_stream.write((char*) &size, sizeof(size));
|
||||
// https://docs.scipy.org/doc/numpy/neps/npy-format.html
|
||||
std::string npy_magic(reinterpret_cast<char*>(buffer), 6);
|
||||
uint8_t major_version = *reinterpret_cast<uint8_t*>(buffer + 6);
|
||||
uint8_t minor_version = *reinterpret_cast<uint8_t*>(buffer + 7);
|
||||
uint16_t header_str_len =
|
||||
*reinterpret_cast<uint16_t*>(buffer + 8);
|
||||
std::string header(
|
||||
reinterpret_cast<char*>(buffer + 9),
|
||||
header_str_len
|
||||
);
|
||||
|
||||
request_stream << out;
|
||||
// Send the request.
|
||||
boost::asio::write(socket_,
|
||||
request,
|
||||
boost::asio::transfer_exactly(request.size() + sizeof(magic) + sizeof(size)),
|
||||
ec);
|
||||
}
|
||||
uint16_t header_total_len = 10 + header_str_len;
|
||||
uint32_t data_length = data.size() - header_total_len;
|
||||
uint32_t num_pixel = img_dims.at(0) * img_dims.at(1);
|
||||
|
||||
template<typename Result>
|
||||
Result UnrealCvClient::receive(std::function<Result(std::istream&, uint32_t)> parser)
|
||||
{
|
||||
/*
|
||||
* Ensure that the data is okay
|
||||
*/
|
||||
if (!(major_version == 1 && minor_version == 0
|
||||
&& npy_magic.find("NUMPY") != std::string::npos)) {
|
||||
throw std::runtime_error("Npy header data not supported");
|
||||
}
|
||||
|
||||
boost::system::error_code ec;
|
||||
boost::asio::streambuf response;
|
||||
if (!(data_length == (num_pixel * sizeof(float_t)))) {
|
||||
throw std::runtime_error(
|
||||
"Npy array data shape does not match the image size"
|
||||
);
|
||||
}
|
||||
|
||||
//first read the 8 byte header
|
||||
boost::asio::read(socket_, response, boost::asio::transfer_exactly(8), ec);
|
||||
handleError(ec);
|
||||
/*
|
||||
* Read and convert the data
|
||||
*/
|
||||
cv::Mat matrix_f32 = cv::Mat(
|
||||
img_dims.at(0),
|
||||
img_dims.at(1),
|
||||
CV_32F,
|
||||
buffer + header_total_len
|
||||
)
|
||||
.clone();
|
||||
|
||||
uint32_t magic;
|
||||
uint32_t size;
|
||||
return matrix_f32;
|
||||
}
|
||||
);
|
||||
}
|
||||
|
||||
// Check that response is OK.
|
||||
std::istream response_stream(&response);
|
||||
response_stream.read((char*)&magic, sizeof(magic));
|
||||
response_stream.read((char*)&size, sizeof(size));
|
||||
void UnrealCvClient::setCamera(const CameraData& camera) {
|
||||
std::string cam_pose_s =
|
||||
(boost::format("vset /camera/%i/pose %.5f %.5f %.5f %.5f %.5f %.5f")
|
||||
% camera.id % camera.x % camera.y % camera.z % camera.pitch
|
||||
% camera.yaw % camera.roll)
|
||||
.str();
|
||||
|
||||
sendCommand(cam_pose_s);
|
||||
}
|
||||
|
||||
boost::asio::read(socket_, response, boost::asio::transfer_exactly(size), ec);
|
||||
handleError(ec);
|
||||
void UnrealCvClient::setCameraSize(int width, int height) {
|
||||
VLOG(1) << "Setting the camera size to: " << width << "x" << height;
|
||||
std::string req_size =
|
||||
(boost::format("vrun r.setres %dx%d") % width % height).str();
|
||||
sendCommand(req_size);
|
||||
}
|
||||
|
||||
Result res = parser(response_stream, size);
|
||||
return res;
|
||||
}
|
||||
void UnrealCvClient::setCameraFOV(float hfov_deg) {
|
||||
VLOG(1) << "Setting the camera horizontal field of view to: "
|
||||
<< hfov_deg << " deg";
|
||||
const int cam_id = 0;
|
||||
std::string req_fov =
|
||||
(boost::format("vset /camera/%i/horizontal_fieldofview %.5f")
|
||||
% cam_id % hfov_deg)
|
||||
.str();
|
||||
sendCommand(req_fov);
|
||||
}
|
||||
|
||||
void UnrealCvClient::handleError(boost::system::error_code ec)
|
||||
{
|
||||
if (ec == boost::asio::error::eof) {
|
||||
throw boost::system::system_error(ec); // Some other error.
|
||||
} else if (ec) {
|
||||
throw boost::system::system_error(ec); // Some other error.
|
||||
}
|
||||
}
|
||||
void UnrealCvClient::sendCommand(std::string command) {
|
||||
if (!(boost::starts_with(command, "vset")
|
||||
|| boost::starts_with(command, "vrun"))) {
|
||||
throw std::runtime_error(
|
||||
"invalid command: command must start with vget or (vset, vrun)"
|
||||
);
|
||||
}
|
||||
|
||||
void UnrealCvClient::sleep(uint32_t delay) {
|
||||
std::this_thread::sleep_for(std::chrono::milliseconds(delay));
|
||||
}
|
||||
uint32_t tmpc = counter_++;
|
||||
VLOG(1) << "SET:" << tmpc << " " << command;
|
||||
send(command, tmpc);
|
||||
sleep(delay_);
|
||||
|
||||
std::string result_prefix = std::to_string(tmpc) + ":";
|
||||
|
||||
std::string UnrealCvClient::istreamToString(
|
||||
std::istream& stream, uint32_t size)
|
||||
{
|
||||
/*
|
||||
* is set command: we never expect something else than "ok",
|
||||
* we do not use mapf
|
||||
*/
|
||||
|
||||
char buffer[size];
|
||||
stream.read(buffer, size);
|
||||
std::string result = receive<std::string>(
|
||||
[this](std::istream& stream, uint32_t size) -> std::string {
|
||||
return this->istreamToString(stream, size);
|
||||
}
|
||||
);
|
||||
|
||||
std::stringstream out;
|
||||
out << buffer;
|
||||
std::string result = out.str();
|
||||
return result;
|
||||
}
|
||||
if (!boost::starts_with(result, result_prefix + "ok")) {
|
||||
throw std::runtime_error("response identifier is incorrect");
|
||||
} else {
|
||||
VLOG(1) << "GET:" << tmpc << " "
|
||||
<< "ok";
|
||||
}
|
||||
|
||||
// from cnpy: https://github.com/rogersce/cnpy/blob/master/cnpy.cpp
|
||||
void UnrealCvClient::parse_npy_header(unsigned char* buffer,
|
||||
size_t& word_size,
|
||||
std::vector<size_t>& shape,
|
||||
bool& fortran_order)
|
||||
{
|
||||
sleep(delay_);
|
||||
}
|
||||
|
||||
//std::string magic_string(buffer,6);
|
||||
uint8_t major_version = *reinterpret_cast<uint8_t*>(buffer+6);
|
||||
uint8_t minor_version = *reinterpret_cast<uint8_t*>(buffer+7);
|
||||
uint16_t header_len = *reinterpret_cast<uint16_t*>(buffer+8);
|
||||
std::string header(reinterpret_cast<char*>(buffer+9),header_len);
|
||||
template <typename Result>
|
||||
Result UnrealCvClient::sendCommand(
|
||||
std::string command, std::function<Result(std::istream&, uint32_t)> mapf
|
||||
) {
|
||||
if (!(boost::starts_with(command, "vget"))) {
|
||||
throw std::runtime_error(
|
||||
"invalid command: command must start with vget or (vset, vrun)"
|
||||
);
|
||||
}
|
||||
|
||||
size_t loc1, loc2;
|
||||
uint32_t tmpc = counter_++;
|
||||
VLOG(1) << "SET:" << tmpc << " " << command;
|
||||
send(command, tmpc);
|
||||
sleep(delay_);
|
||||
|
||||
//fortran order
|
||||
loc1 = header.find("fortran_order")+16;
|
||||
fortran_order = (header.substr(loc1,4) == "True" ? true : false);
|
||||
std::string result_prefix = std::to_string(tmpc) + ":";
|
||||
|
||||
//shape
|
||||
loc1 = header.find("(");
|
||||
loc2 = header.find(")");
|
||||
/*
|
||||
* is get command: we expect a response that can
|
||||
* be a string or binary data
|
||||
*/
|
||||
|
||||
std::regex num_regex("[0-9][0-9]*");
|
||||
std::smatch sm;
|
||||
shape.clear();
|
||||
Result result = receive<Result>(
|
||||
[this,
|
||||
result_prefix,
|
||||
mapf](std::istream& stream, uint32_t size) -> Result {
|
||||
std::string prefix =
|
||||
istreamToString(stream, result_prefix.size());
|
||||
size -= result_prefix.size();
|
||||
|
||||
std::string str_shape = header.substr(loc1+1,loc2-loc1-1);
|
||||
while(std::regex_search(str_shape, sm, num_regex))
|
||||
{
|
||||
shape.push_back(std::stoi(sm[0].str()));
|
||||
str_shape = sm.suffix().str();
|
||||
}
|
||||
if (!boost::starts_with(prefix, result_prefix))
|
||||
throw std::runtime_error("response identifier is incorrect"
|
||||
);
|
||||
|
||||
//endian, word size, data type
|
||||
//byte order code | stands for not applicable.
|
||||
//not sure when this applies except for byte array
|
||||
loc1 = header.find("descr")+9;
|
||||
bool littleEndian = (header[loc1] == '<' || header[loc1] == '|' ? true : false);
|
||||
assert(littleEndian);
|
||||
return mapf(stream, size);
|
||||
}
|
||||
);
|
||||
|
||||
//char type = header[loc1+1];
|
||||
//assert(type == map_type(T));
|
||||
sleep(delay_);
|
||||
return result;
|
||||
}
|
||||
|
||||
std::string str_ws = header.substr(loc1+2);
|
||||
loc2 = str_ws.find("'");
|
||||
word_size = atoi(str_ws.substr(0,loc2).c_str());
|
||||
}
|
||||
void UnrealCvClient::send(std::string msg, uint32_t counter) {
|
||||
std::string out = std::to_string(counter) + ":" + msg;
|
||||
|
||||
uint32_t magic = 0x9E2B83C1;
|
||||
uint32_t size = out.length();
|
||||
|
||||
boost::asio::streambuf request;
|
||||
std::ostream request_stream(&request);
|
||||
boost::system::error_code ec;
|
||||
|
||||
request_stream.write((char*) &magic, sizeof(magic));
|
||||
request_stream.write((char*) &size, sizeof(size));
|
||||
|
||||
request_stream << out;
|
||||
// Send the request.
|
||||
boost::asio::write(
|
||||
socket_,
|
||||
request,
|
||||
boost::asio::transfer_exactly(
|
||||
request.size() + sizeof(magic) + sizeof(size)
|
||||
),
|
||||
ec
|
||||
);
|
||||
}
|
||||
|
||||
template <typename Result>
|
||||
Result UnrealCvClient::receive(
|
||||
std::function<Result(std::istream&, uint32_t)> parser
|
||||
) {
|
||||
boost::system::error_code ec;
|
||||
boost::asio::streambuf response;
|
||||
|
||||
// first read the 8 byte header
|
||||
boost::asio::read(
|
||||
socket_,
|
||||
response,
|
||||
boost::asio::transfer_exactly(8),
|
||||
ec
|
||||
);
|
||||
handleError(ec);
|
||||
|
||||
uint32_t magic;
|
||||
uint32_t size;
|
||||
|
||||
// Check that response is OK.
|
||||
std::istream response_stream(&response);
|
||||
response_stream.read((char*) &magic, sizeof(magic));
|
||||
response_stream.read((char*) &size, sizeof(size));
|
||||
|
||||
boost::asio::read(
|
||||
socket_,
|
||||
response,
|
||||
boost::asio::transfer_exactly(size),
|
||||
ec
|
||||
);
|
||||
handleError(ec);
|
||||
|
||||
Result res = parser(response_stream, size);
|
||||
return res;
|
||||
}
|
||||
|
||||
void UnrealCvClient::handleError(boost::system::error_code ec) {
|
||||
if (ec == boost::asio::error::eof)
|
||||
throw boost::system::system_error(ec); // Some other error.
|
||||
else if (ec)
|
||||
throw boost::system::system_error(ec); // Some other error.
|
||||
}
|
||||
|
||||
void UnrealCvClient::sleep(uint32_t delay) {
|
||||
std::this_thread::sleep_for(std::chrono::milliseconds(delay));
|
||||
}
|
||||
|
||||
std::string
|
||||
UnrealCvClient::istreamToString(std::istream& stream, uint32_t size) {
|
||||
char buffer[size];
|
||||
stream.read(buffer, size);
|
||||
|
||||
std::stringstream out;
|
||||
out << buffer;
|
||||
std::string result = out.str();
|
||||
return result;
|
||||
}
|
||||
|
||||
// from cnpy: https://github.com/rogersce/cnpy/blob/master/cnpy.cpp
|
||||
void UnrealCvClient::parse_npy_header(
|
||||
unsigned char* buffer,
|
||||
size_t& word_size,
|
||||
std::vector<size_t>& shape,
|
||||
bool& fortran_order
|
||||
) {
|
||||
// std::string magic_string(buffer,6);
|
||||
uint8_t major_version = *reinterpret_cast<uint8_t*>(buffer + 6);
|
||||
uint8_t minor_version = *reinterpret_cast<uint8_t*>(buffer + 7);
|
||||
uint16_t header_len = *reinterpret_cast<uint16_t*>(buffer + 8);
|
||||
std::string header(reinterpret_cast<char*>(buffer + 9), header_len);
|
||||
|
||||
size_t loc1, loc2;
|
||||
|
||||
// fortran order
|
||||
loc1 = header.find("fortran_order") + 16;
|
||||
fortran_order = (header.substr(loc1, 4) == "True" ? true : false);
|
||||
|
||||
// shape
|
||||
loc1 = header.find("(");
|
||||
loc2 = header.find(")");
|
||||
|
||||
std::regex num_regex("[0-9][0-9]*");
|
||||
std::smatch sm;
|
||||
shape.clear();
|
||||
|
||||
std::string str_shape = header.substr(loc1 + 1, loc2 - loc1 - 1);
|
||||
while (std::regex_search(str_shape, sm, num_regex)) {
|
||||
shape.push_back(std::stoi(sm[0].str()));
|
||||
str_shape = sm.suffix().str();
|
||||
}
|
||||
|
||||
// endian, word size, data type
|
||||
// byte order code | stands for not applicable.
|
||||
// not sure when this applies except for byte array
|
||||
loc1 = header.find("descr") + 9;
|
||||
bool littleEndian =
|
||||
(header[loc1] == '<' || header[loc1] == '|' ? true : false);
|
||||
assert(littleEndian);
|
||||
|
||||
// char type = header[loc1+1];
|
||||
// assert(type == map_type(T));
|
||||
|
||||
std::string str_ws = header.substr(loc1 + 2);
|
||||
loc2 = str_ws.find("'");
|
||||
word_size = atoi(str_ws.substr(0, loc2).c_str());
|
||||
}
|
||||
|
||||
} // namespace event_camera_simulator
|
||||
|
@ -5,31 +5,25 @@ using boost::asio::ip::tcp;
|
||||
using namespace std;
|
||||
|
||||
int main() {
|
||||
event_camera_simulator::UnrealCvClient client("localhost", "9000");
|
||||
event_camera_simulator::UnrealCvClient client("localhost", "9000");
|
||||
|
||||
cv::namedWindow("Image", cv::WINDOW_AUTOSIZE );
|
||||
cv::namedWindow("Depthmap", cv::WINDOW_AUTOSIZE );
|
||||
cv::namedWindow("Image", cv::WINDOW_AUTOSIZE);
|
||||
cv::namedWindow("Depthmap", cv::WINDOW_AUTOSIZE);
|
||||
|
||||
for(double y = 0.0; y<100.0; y+=10.0)
|
||||
{
|
||||
event_camera_simulator::CameraData test = {0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
0.0,
|
||||
y,
|
||||
100.0};
|
||||
for (double y = 0.0; y < 100.0; y += 10.0) {
|
||||
event_camera_simulator::CameraData test =
|
||||
{0, 0.0, 0.0, 0.0, 0.0, y, 100.0};
|
||||
|
||||
client.setCamera(test);
|
||||
cv::Mat img = client.getImage(0);
|
||||
cv::imshow("Image", img);
|
||||
client.setCamera(test);
|
||||
cv::Mat img = client.getImage(0);
|
||||
cv::imshow("Image", img);
|
||||
|
||||
cv::Mat depthmap = client.getDepth(0);
|
||||
cv::normalize(depthmap, depthmap, 0, 255, cv::NORM_MINMAX, CV_8U);
|
||||
cv::imshow("Depthmap", depthmap);
|
||||
cv::Mat depthmap = client.getDepth(0);
|
||||
cv::normalize(depthmap, depthmap, 0, 255, cv::NORM_MINMAX, CV_8U);
|
||||
cv::imshow("Depthmap", depthmap);
|
||||
|
||||
cv::waitKey(10);
|
||||
}
|
||||
cv::waitKey(10);
|
||||
}
|
||||
|
||||
return 0;
|
||||
return 0;
|
||||
}
|
||||
|
@ -2,44 +2,68 @@
|
||||
|
||||
#include <esim/common/types.hpp>
|
||||
#include <esim/visualization/publisher_interface.hpp>
|
||||
|
||||
#include <fstream>
|
||||
|
||||
namespace event_camera_simulator {
|
||||
|
||||
class AdaptiveSamplingBenchmarkPublisher : public Publisher
|
||||
{
|
||||
public:
|
||||
class AdaptiveSamplingBenchmarkPublisher : public Publisher {
|
||||
public:
|
||||
using PixelLocation = std::pair<int, int>;
|
||||
using PixelLocations = std::vector<PixelLocation>;
|
||||
|
||||
using PixelLocation = std::pair<int,int>;
|
||||
using PixelLocations = std::vector<PixelLocation>;
|
||||
AdaptiveSamplingBenchmarkPublisher(
|
||||
const std::string& benchmark_folder,
|
||||
const std::string& pixels_to_record_filename
|
||||
);
|
||||
|
||||
AdaptiveSamplingBenchmarkPublisher(const std::string &benchmark_folder,
|
||||
const std::string &pixels_to_record_filename);
|
||||
~AdaptiveSamplingBenchmarkPublisher();
|
||||
|
||||
~AdaptiveSamplingBenchmarkPublisher();
|
||||
virtual void
|
||||
imageCallback(const ImagePtrVector& images, Time t) override;
|
||||
virtual void eventsCallback(const EventsVector& events) override;
|
||||
virtual void opticFlowCallback(
|
||||
const OpticFlowPtrVector& optic_flows, Time t
|
||||
) override;
|
||||
|
||||
virtual void imageCallback(const ImagePtrVector& images, Time t) override;
|
||||
virtual void eventsCallback(const EventsVector& events) override;
|
||||
virtual void opticFlowCallback(const OpticFlowPtrVector& optic_flows, Time t) override;
|
||||
virtual void imageCorruptedCallback(
|
||||
const ImagePtrVector& corrupted_images, Time t
|
||||
) override {}
|
||||
|
||||
virtual void imageCorruptedCallback(const ImagePtrVector& corrupted_images, Time t) override {}
|
||||
virtual void depthmapCallback(const DepthmapPtrVector& depthmaps, Time t) override {}
|
||||
virtual void poseCallback(const Transformation& T_W_B, const TransformationVector& T_W_Cs, Time t) override {}
|
||||
virtual void twistCallback(const AngularVelocityVector& ws, const LinearVelocityVector& vs, Time t) override {}
|
||||
virtual void imuCallback(const Vector3& acc, const Vector3& gyr, Time t) override {}
|
||||
virtual void cameraInfoCallback(const ze::CameraRig::Ptr& camera_rig, Time t) override {}
|
||||
virtual void pointcloudCallback(const PointCloudVector& pointclouds, Time t) override {}
|
||||
virtual void
|
||||
depthmapCallback(const DepthmapPtrVector& depthmaps, Time t) override {}
|
||||
|
||||
static Publisher::Ptr createFromGflags();
|
||||
virtual void poseCallback(
|
||||
const Transformation& T_W_B,
|
||||
const TransformationVector& T_W_Cs,
|
||||
Time t
|
||||
) override {}
|
||||
|
||||
private:
|
||||
std::ofstream events_file_;
|
||||
std::ofstream images_file_;
|
||||
std::ofstream pixel_intensities_file_;
|
||||
std::ofstream optic_flows_file_;
|
||||
size_t image_index_;
|
||||
PixelLocations pixels_to_record_;
|
||||
};
|
||||
virtual void twistCallback(
|
||||
const AngularVelocityVector& ws,
|
||||
const LinearVelocityVector& vs,
|
||||
Time t
|
||||
) override {}
|
||||
|
||||
virtual void
|
||||
imuCallback(const Vector3& acc, const Vector3& gyr, Time t) override {}
|
||||
|
||||
virtual void cameraInfoCallback(
|
||||
const ze::CameraRig::Ptr& camera_rig, Time t
|
||||
) override {}
|
||||
|
||||
virtual void pointcloudCallback(
|
||||
const PointCloudVector& pointclouds, Time t
|
||||
) override {}
|
||||
|
||||
static Publisher::Ptr createFromGflags();
|
||||
|
||||
private:
|
||||
std::ofstream events_file_;
|
||||
std::ofstream images_file_;
|
||||
std::ofstream pixel_intensities_file_;
|
||||
std::ofstream optic_flows_file_;
|
||||
size_t image_index_;
|
||||
PixelLocations pixels_to_record_;
|
||||
};
|
||||
|
||||
} // namespace event_camera_simulator
|
||||
|
@ -5,25 +5,47 @@
|
||||
|
||||
namespace event_camera_simulator {
|
||||
|
||||
class Publisher
|
||||
{
|
||||
public:
|
||||
ZE_POINTER_TYPEDEFS(Publisher);
|
||||
class Publisher {
|
||||
public:
|
||||
ZE_POINTER_TYPEDEFS(Publisher);
|
||||
|
||||
Publisher() = default;
|
||||
virtual ~Publisher() = default;
|
||||
Publisher() = default;
|
||||
virtual ~Publisher() = default;
|
||||
|
||||
virtual void imageCallback(const ImagePtrVector& images, Time t) {}
|
||||
virtual void imageCorruptedCallback(const ImagePtrVector& corrupted_images, Time t) {}
|
||||
virtual void depthmapCallback(const DepthmapPtrVector& depthmaps, Time t) {}
|
||||
virtual void opticFlowCallback(const OpticFlowPtrVector& optic_flows, Time t) {}
|
||||
virtual void eventsCallback(const EventsVector& events) {}
|
||||
virtual void poseCallback(const Transformation& T_W_B, const TransformationVector& T_W_Cs, Time t) {}
|
||||
virtual void twistCallback(const AngularVelocityVector& ws, const LinearVelocityVector& vs, Time t) {}
|
||||
virtual void imuCallback(const Vector3& acc, const Vector3& gyr, Time t) {}
|
||||
virtual void cameraInfoCallback(const ze::CameraRig::Ptr& camera_rig, Time t) {}
|
||||
virtual void pointcloudCallback(const PointCloudVector& pointclouds, Time t) {}
|
||||
virtual void imageCallback(const ImagePtrVector& images, Time t) {}
|
||||
|
||||
};
|
||||
virtual void
|
||||
imageCorruptedCallback(const ImagePtrVector& corrupted_images, Time t) {
|
||||
}
|
||||
|
||||
virtual void
|
||||
depthmapCallback(const DepthmapPtrVector& depthmaps, Time t) {}
|
||||
|
||||
virtual void
|
||||
opticFlowCallback(const OpticFlowPtrVector& optic_flows, Time t) {}
|
||||
|
||||
virtual void eventsCallback(const EventsVector& events) {}
|
||||
|
||||
virtual void poseCallback(
|
||||
const Transformation& T_W_B,
|
||||
const TransformationVector& T_W_Cs,
|
||||
Time t
|
||||
) {}
|
||||
|
||||
virtual void twistCallback(
|
||||
const AngularVelocityVector& ws,
|
||||
const LinearVelocityVector& vs,
|
||||
Time t
|
||||
) {}
|
||||
|
||||
virtual void
|
||||
imuCallback(const Vector3& acc, const Vector3& gyr, Time t) {}
|
||||
|
||||
virtual void
|
||||
cameraInfoCallback(const ze::CameraRig::Ptr& camera_rig, Time t) {}
|
||||
|
||||
virtual void
|
||||
pointcloudCallback(const PointCloudVector& pointclouds, Time t) {}
|
||||
};
|
||||
|
||||
} // namespace event_camera_simulator
|
||||
|
@ -2,58 +2,75 @@
|
||||
|
||||
#include <esim/common/types.hpp>
|
||||
#include <esim/visualization/publisher_interface.hpp>
|
||||
|
||||
#include <ros/ros.h>
|
||||
#include <image_transport/image_transport.h>
|
||||
#include <geometry_msgs/TransformStamped.h>
|
||||
#include <image_transport/image_transport.h>
|
||||
#include <ros/ros.h>
|
||||
#include <tf/tf.h>
|
||||
#include <tf/transform_broadcaster.h>
|
||||
|
||||
namespace event_camera_simulator {
|
||||
|
||||
class RosPublisher : public Publisher
|
||||
{
|
||||
public:
|
||||
RosPublisher(size_t num_cameras);
|
||||
~RosPublisher();
|
||||
class RosPublisher : public Publisher {
|
||||
public:
|
||||
RosPublisher(size_t num_cameras);
|
||||
~RosPublisher();
|
||||
|
||||
virtual void imageCallback(const ImagePtrVector& images, Time t) override;
|
||||
virtual void imageCorruptedCallback(const ImagePtrVector& corrupted_images, Time t) override;
|
||||
virtual void depthmapCallback(const DepthmapPtrVector& depthmaps, Time t) override;
|
||||
virtual void opticFlowCallback(const OpticFlowPtrVector& optic_flows, Time t) override;
|
||||
virtual void eventsCallback(const EventsVector& events) override;
|
||||
virtual void poseCallback(const Transformation& T_W_B, const TransformationVector& T_W_Cs, Time t) override;
|
||||
virtual void twistCallback(const AngularVelocityVector& ws, const LinearVelocityVector& vs, Time t) override;
|
||||
virtual void imuCallback(const Vector3& acc, const Vector3& gyr, Time t) override;
|
||||
virtual void cameraInfoCallback(const ze::CameraRig::Ptr& camera_rig, Time t) override;
|
||||
virtual void pointcloudCallback(const PointCloudVector& pointclouds, Time t) override;
|
||||
virtual void
|
||||
imageCallback(const ImagePtrVector& images, Time t) override;
|
||||
virtual void imageCorruptedCallback(
|
||||
const ImagePtrVector& corrupted_images, Time t
|
||||
) override;
|
||||
virtual void
|
||||
depthmapCallback(const DepthmapPtrVector& depthmaps, Time t) override;
|
||||
virtual void opticFlowCallback(
|
||||
const OpticFlowPtrVector& optic_flows, Time t
|
||||
) override;
|
||||
virtual void eventsCallback(const EventsVector& events) override;
|
||||
virtual void poseCallback(
|
||||
const Transformation& T_W_B,
|
||||
const TransformationVector& T_W_Cs,
|
||||
Time t
|
||||
) override;
|
||||
virtual void twistCallback(
|
||||
const AngularVelocityVector& ws,
|
||||
const LinearVelocityVector& vs,
|
||||
Time t
|
||||
) override;
|
||||
virtual void
|
||||
imuCallback(const Vector3& acc, const Vector3& gyr, Time t) override;
|
||||
virtual void cameraInfoCallback(
|
||||
const ze::CameraRig::Ptr& camera_rig, Time t
|
||||
) override;
|
||||
virtual void pointcloudCallback(
|
||||
const PointCloudVector& pointclouds, Time t
|
||||
) override;
|
||||
|
||||
private:
|
||||
size_t num_cameras_;
|
||||
std::vector<cv::Size> sensor_sizes_;
|
||||
private:
|
||||
size_t num_cameras_;
|
||||
std::vector<cv::Size> sensor_sizes_;
|
||||
|
||||
std::shared_ptr<ros::NodeHandle> nh_;
|
||||
std::shared_ptr<image_transport::ImageTransport> it_;
|
||||
std::shared_ptr<ros::NodeHandle> nh_;
|
||||
std::shared_ptr<image_transport::ImageTransport> it_;
|
||||
|
||||
std::vector< std::shared_ptr<ros::Publisher> > event_pub_;
|
||||
std::shared_ptr<ros::Publisher> pose_pub_;
|
||||
std::shared_ptr<ros::Publisher> imu_pub_;
|
||||
std::vector< std::shared_ptr<ros::Publisher> > pointcloud_pub_;
|
||||
std::vector< std::shared_ptr<ros::Publisher> > camera_info_pub_;
|
||||
std::vector< std::shared_ptr<image_transport::Publisher> > image_pub_;
|
||||
std::vector< std::shared_ptr<image_transport::Publisher> > image_corrupted_pub_;
|
||||
std::vector< std::shared_ptr<image_transport::Publisher> > depthmap_pub_;
|
||||
std::vector< std::shared_ptr<ros::Publisher> > optic_flow_pub_;
|
||||
std::vector< std::shared_ptr<ros::Publisher> > twist_pub_;
|
||||
std::shared_ptr<tf::TransformBroadcaster> tf_broadcaster_;
|
||||
std::vector<std::shared_ptr<ros::Publisher>> event_pub_;
|
||||
std::shared_ptr<ros::Publisher> pose_pub_;
|
||||
std::shared_ptr<ros::Publisher> imu_pub_;
|
||||
std::vector<std::shared_ptr<ros::Publisher>> pointcloud_pub_;
|
||||
std::vector<std::shared_ptr<ros::Publisher>> camera_info_pub_;
|
||||
std::vector<std::shared_ptr<image_transport::Publisher>> image_pub_;
|
||||
std::vector<std::shared_ptr<image_transport::Publisher>>
|
||||
image_corrupted_pub_;
|
||||
std::vector<std::shared_ptr<image_transport::Publisher>> depthmap_pub_;
|
||||
std::vector<std::shared_ptr<ros::Publisher>> optic_flow_pub_;
|
||||
std::vector<std::shared_ptr<ros::Publisher>> twist_pub_;
|
||||
std::shared_ptr<tf::TransformBroadcaster> tf_broadcaster_;
|
||||
|
||||
Time last_published_camera_info_time_;
|
||||
Time last_published_image_time_;
|
||||
Time last_published_corrupted_image_time_;
|
||||
Time last_published_depthmap_time_;
|
||||
Time last_published_optic_flow_time_;
|
||||
Time last_published_pointcloud_time_;
|
||||
|
||||
};
|
||||
Time last_published_camera_info_time_;
|
||||
Time last_published_image_time_;
|
||||
Time last_published_corrupted_image_time_;
|
||||
Time last_published_depthmap_time_;
|
||||
Time last_published_optic_flow_time_;
|
||||
Time last_published_pointcloud_time_;
|
||||
};
|
||||
|
||||
} // namespace event_camera_simulator
|
||||
|
@ -1,54 +1,66 @@
|
||||
#pragma once
|
||||
|
||||
#include <esim/common/types.hpp>
|
||||
#include <pcl_ros/point_cloud.h>
|
||||
#include <pcl/point_types.h>
|
||||
#include <sensor_msgs/Image.h>
|
||||
#include <dvs_msgs/EventArray.h>
|
||||
#include <esim/common/types.hpp>
|
||||
#include <esim_msgs/OpticFlow.h>
|
||||
#include <geometry_msgs/PoseStamped.h>
|
||||
#include <geometry_msgs/TwistStamped.h>
|
||||
#include <sensor_msgs/Imu.h>
|
||||
#include <pcl/point_types.h>
|
||||
#include <pcl_ros/point_cloud.h>
|
||||
#include <sensor_msgs/CameraInfo.h>
|
||||
#include <esim_msgs/OpticFlow.h>
|
||||
#include <sensor_msgs/Image.h>
|
||||
#include <sensor_msgs/Imu.h>
|
||||
|
||||
namespace event_camera_simulator {
|
||||
|
||||
inline std::string getTopicName(int i, const std::string& suffix)
|
||||
{
|
||||
std::stringstream ss;
|
||||
ss << "cam" << i << "/" << suffix;
|
||||
return ss.str();
|
||||
}
|
||||
inline std::string getTopicName(int i, const std::string& suffix) {
|
||||
std::stringstream ss;
|
||||
ss << "cam" << i << "/" << suffix;
|
||||
return ss.str();
|
||||
}
|
||||
|
||||
inline std::string getTopicName(const std::string& prefix, int i, const std::string& suffix)
|
||||
{
|
||||
std::stringstream ss;
|
||||
ss << prefix << "/" << getTopicName(i, suffix);
|
||||
return ss.str();
|
||||
}
|
||||
inline std::string
|
||||
getTopicName(const std::string& prefix, int i, const std::string& suffix) {
|
||||
std::stringstream ss;
|
||||
ss << prefix << "/" << getTopicName(i, suffix);
|
||||
return ss.str();
|
||||
}
|
||||
|
||||
inline ros::Time toRosTime(Time t)
|
||||
{
|
||||
ros::Time ros_time;
|
||||
ros_time.fromNSec(t);
|
||||
return ros_time;
|
||||
}
|
||||
inline ros::Time toRosTime(Time t) {
|
||||
ros::Time ros_time;
|
||||
ros_time.fromNSec(t);
|
||||
return ros_time;
|
||||
}
|
||||
|
||||
void pointCloudToMsg(const PointCloud& pointcloud, const std::string& frame_id, Time t,pcl::PointCloud<pcl::PointXYZRGB>::Ptr& msg);
|
||||
void pointCloudToMsg(
|
||||
const PointCloud& pointcloud,
|
||||
const std::string& frame_id,
|
||||
Time t,
|
||||
pcl::PointCloud<pcl::PointXYZRGB>::Ptr& msg
|
||||
);
|
||||
|
||||
void imageToMsg(const Image& image, Time t, sensor_msgs::ImagePtr& msg);
|
||||
void imageToMsg(const Image& image, Time t, sensor_msgs::ImagePtr& msg);
|
||||
|
||||
void depthmapToMsg(const Depthmap& depthmap, Time t, sensor_msgs::ImagePtr& msg);
|
||||
void
|
||||
depthmapToMsg(const Depthmap& depthmap, Time t, sensor_msgs::ImagePtr& msg);
|
||||
|
||||
void opticFlowToMsg(const OpticFlow& flow, Time t, esim_msgs::OpticFlowPtr& msg);
|
||||
void
|
||||
opticFlowToMsg(const OpticFlow& flow, Time t, esim_msgs::OpticFlowPtr& msg);
|
||||
|
||||
void eventsToMsg(const Events& events, int width, int height, dvs_msgs::EventArrayPtr& msg);
|
||||
void eventsToMsg(
|
||||
const Events& events,
|
||||
int width,
|
||||
int height,
|
||||
dvs_msgs::EventArrayPtr& msg
|
||||
);
|
||||
|
||||
sensor_msgs::Imu imuToMsg(const Vector3& acc, const Vector3& gyr, Time t);
|
||||
sensor_msgs::Imu imuToMsg(const Vector3& acc, const Vector3& gyr, Time t);
|
||||
|
||||
geometry_msgs::TwistStamped twistToMsg(const AngularVelocity& w, const LinearVelocity& v, Time t);
|
||||
|
||||
void cameraToMsg(const ze::Camera::Ptr& camera, Time t, sensor_msgs::CameraInfoPtr& msg);
|
||||
geometry_msgs::TwistStamped
|
||||
twistToMsg(const AngularVelocity& w, const LinearVelocity& v, Time t);
|
||||
|
||||
void cameraToMsg(
|
||||
const ze::Camera::Ptr& camera, Time t, sensor_msgs::CameraInfoPtr& msg
|
||||
);
|
||||
|
||||
} // namespace event_camera_simulator
|
||||
|
@ -6,40 +6,56 @@
|
||||
|
||||
namespace event_camera_simulator {
|
||||
|
||||
class RosbagWriter : public Publisher
|
||||
{
|
||||
public:
|
||||
RosbagWriter(const std::string& path_to_output_bag,
|
||||
size_t num_cameras);
|
||||
~RosbagWriter();
|
||||
class RosbagWriter : public Publisher {
|
||||
public:
|
||||
RosbagWriter(const std::string& path_to_output_bag, size_t num_cameras);
|
||||
~RosbagWriter();
|
||||
|
||||
virtual void imageCallback(const ImagePtrVector& images, Time t) override;
|
||||
virtual void imageCorruptedCallback(const ImagePtrVector& corrupted_images, Time t) override;
|
||||
virtual void depthmapCallback(const DepthmapPtrVector& depthmaps, Time t) override;
|
||||
virtual void opticFlowCallback(const OpticFlowPtrVector& optic_flows, Time t) override;
|
||||
virtual void eventsCallback(const EventsVector& events) override;
|
||||
virtual void poseCallback(const Transformation& T_W_B, const TransformationVector& T_W_Cs, Time t) override;
|
||||
virtual void twistCallback(const AngularVelocityVector& ws, const LinearVelocityVector& vs, Time t) override;
|
||||
virtual void imuCallback(const Vector3& acc, const Vector3& gyr, Time t) override;
|
||||
virtual void cameraInfoCallback(const ze::CameraRig::Ptr& camera_rig, Time t) override;
|
||||
virtual void pointcloudCallback(const PointCloudVector& pointclouds, Time t) override;
|
||||
virtual void
|
||||
imageCallback(const ImagePtrVector& images, Time t) override;
|
||||
virtual void imageCorruptedCallback(
|
||||
const ImagePtrVector& corrupted_images, Time t
|
||||
) override;
|
||||
virtual void
|
||||
depthmapCallback(const DepthmapPtrVector& depthmaps, Time t) override;
|
||||
virtual void opticFlowCallback(
|
||||
const OpticFlowPtrVector& optic_flows, Time t
|
||||
) override;
|
||||
virtual void eventsCallback(const EventsVector& events) override;
|
||||
virtual void poseCallback(
|
||||
const Transformation& T_W_B,
|
||||
const TransformationVector& T_W_Cs,
|
||||
Time t
|
||||
) override;
|
||||
virtual void twistCallback(
|
||||
const AngularVelocityVector& ws,
|
||||
const LinearVelocityVector& vs,
|
||||
Time t
|
||||
) override;
|
||||
virtual void
|
||||
imuCallback(const Vector3& acc, const Vector3& gyr, Time t) override;
|
||||
virtual void cameraInfoCallback(
|
||||
const ze::CameraRig::Ptr& camera_rig, Time t
|
||||
) override;
|
||||
virtual void pointcloudCallback(
|
||||
const PointCloudVector& pointclouds, Time t
|
||||
) override;
|
||||
|
||||
static Publisher::Ptr createBagWriterFromGflags(size_t num_cameras);
|
||||
static Publisher::Ptr createBagWriterFromGflags(size_t num_cameras);
|
||||
|
||||
private:
|
||||
size_t num_cameras_;
|
||||
std::vector<cv::Size> sensor_sizes_;
|
||||
rosbag::Bag bag_;
|
||||
private:
|
||||
size_t num_cameras_;
|
||||
std::vector<cv::Size> sensor_sizes_;
|
||||
rosbag::Bag bag_;
|
||||
|
||||
const std::string topic_name_prefix_ = "";
|
||||
const std::string topic_name_prefix_ = "";
|
||||
|
||||
Time last_published_camera_info_time_;
|
||||
Time last_published_image_time_;
|
||||
Time last_published_corrupted_image_time_;
|
||||
Time last_published_depthmap_time_;
|
||||
Time last_published_optic_flow_time_;
|
||||
Time last_published_pointcloud_time_;
|
||||
|
||||
};
|
||||
Time last_published_camera_info_time_;
|
||||
Time last_published_image_time_;
|
||||
Time last_published_corrupted_image_time_;
|
||||
Time last_published_depthmap_time_;
|
||||
Time last_published_optic_flow_time_;
|
||||
Time last_published_pointcloud_time_;
|
||||
};
|
||||
|
||||
} // namespace event_camera_simulator
|
||||
|
@ -2,44 +2,66 @@
|
||||
|
||||
#include <esim/common/types.hpp>
|
||||
#include <esim/visualization/publisher_interface.hpp>
|
||||
|
||||
#include <fstream>
|
||||
|
||||
namespace event_camera_simulator {
|
||||
|
||||
class SyntheticOpticFlowPublisher : public Publisher
|
||||
{
|
||||
public:
|
||||
SyntheticOpticFlowPublisher(const std::string &output_folder);
|
||||
class SyntheticOpticFlowPublisher : public Publisher {
|
||||
public:
|
||||
SyntheticOpticFlowPublisher(const std::string& output_folder);
|
||||
|
||||
~SyntheticOpticFlowPublisher();
|
||||
~SyntheticOpticFlowPublisher();
|
||||
|
||||
virtual void imageCallback(const ImagePtrVector& images, Time t) override {
|
||||
CHECK_EQ(images.size(), 1);
|
||||
if(sensor_size_.width == 0 || sensor_size_.height == 0)
|
||||
{
|
||||
sensor_size_ = images[0]->size();
|
||||
}
|
||||
}
|
||||
virtual void
|
||||
imageCallback(const ImagePtrVector& images, Time t) override {
|
||||
CHECK_EQ(images.size(), 1);
|
||||
if (sensor_size_.width == 0 || sensor_size_.height == 0)
|
||||
sensor_size_ = images[0]->size();
|
||||
}
|
||||
|
||||
virtual void eventsCallback(const EventsVector& events) override;
|
||||
virtual void opticFlowCallback(const OpticFlowPtrVector& optic_flows, Time t) override {}
|
||||
virtual void eventsCallback(const EventsVector& events) override;
|
||||
|
||||
virtual void imageCorruptedCallback(const ImagePtrVector& corrupted_images, Time t) override {}
|
||||
virtual void depthmapCallback(const DepthmapPtrVector& depthmaps, Time t) override {}
|
||||
virtual void poseCallback(const Transformation& T_W_B, const TransformationVector& T_W_Cs, Time t) override {}
|
||||
virtual void twistCallback(const AngularVelocityVector& ws, const LinearVelocityVector& vs, Time t) override {}
|
||||
virtual void imuCallback(const Vector3& acc, const Vector3& gyr, Time t) override {}
|
||||
virtual void cameraInfoCallback(const ze::CameraRig::Ptr& camera_rig, Time t) override {}
|
||||
virtual void pointcloudCallback(const PointCloudVector& pointclouds, Time t) override {}
|
||||
virtual void opticFlowCallback(
|
||||
const OpticFlowPtrVector& optic_flows, Time t
|
||||
) override {}
|
||||
|
||||
static Publisher::Ptr createFromGflags();
|
||||
virtual void imageCorruptedCallback(
|
||||
const ImagePtrVector& corrupted_images, Time t
|
||||
) override {}
|
||||
|
||||
private:
|
||||
std::string output_folder_;
|
||||
cv::Size sensor_size_;
|
||||
std::ofstream events_file_;
|
||||
Events events_; // buffer containing all the events since the beginning
|
||||
};
|
||||
virtual void
|
||||
depthmapCallback(const DepthmapPtrVector& depthmaps, Time t) override {}
|
||||
|
||||
virtual void poseCallback(
|
||||
const Transformation& T_W_B,
|
||||
const TransformationVector& T_W_Cs,
|
||||
Time t
|
||||
) override {}
|
||||
|
||||
virtual void twistCallback(
|
||||
const AngularVelocityVector& ws,
|
||||
const LinearVelocityVector& vs,
|
||||
Time t
|
||||
) override {}
|
||||
|
||||
virtual void
|
||||
imuCallback(const Vector3& acc, const Vector3& gyr, Time t) override {}
|
||||
|
||||
virtual void cameraInfoCallback(
|
||||
const ze::CameraRig::Ptr& camera_rig, Time t
|
||||
) override {}
|
||||
|
||||
virtual void pointcloudCallback(
|
||||
const PointCloudVector& pointclouds, Time t
|
||||
) override {}
|
||||
|
||||
static Publisher::Ptr createFromGflags();
|
||||
|
||||
private:
|
||||
std::string output_folder_;
|
||||
cv::Size sensor_size_;
|
||||
std::ofstream events_file_;
|
||||
Events events_; // buffer containing all the events since the beginning
|
||||
};
|
||||
|
||||
} // namespace event_camera_simulator
|
||||
|
@ -1,135 +1,151 @@
|
||||
#include <esim/visualization/adaptive_sampling_benchmark_publisher.hpp>
|
||||
#include <esim/common/utils.hpp>
|
||||
#include <ze/common/path_utils.hpp>
|
||||
#include <ze/common/file_utils.hpp>
|
||||
#include <ze/common/time_conversions.hpp>
|
||||
|
||||
#include <opencv2/highgui/highgui.hpp>
|
||||
|
||||
#include <esim/visualization/adaptive_sampling_benchmark_publisher.hpp>
|
||||
#include <gflags/gflags.h>
|
||||
#include <glog/logging.h>
|
||||
#include <opencv2/highgui/highgui.hpp>
|
||||
#include <ze/common/file_utils.hpp>
|
||||
#include <ze/common/path_utils.hpp>
|
||||
#include <ze/common/time_conversions.hpp>
|
||||
|
||||
DEFINE_string(adaptive_sampling_benchmark_folder, "",
|
||||
"Folder in which to output the results.");
|
||||
DEFINE_string(
|
||||
adaptive_sampling_benchmark_folder,
|
||||
"",
|
||||
"Folder in which to output the results."
|
||||
);
|
||||
|
||||
DEFINE_string(adaptive_sampling_benchmark_pixels_to_record_file, "",
|
||||
"File containing the pixel locations to record.");
|
||||
DEFINE_string(
|
||||
adaptive_sampling_benchmark_pixels_to_record_file,
|
||||
"",
|
||||
"File containing the pixel locations to record."
|
||||
);
|
||||
|
||||
namespace event_camera_simulator {
|
||||
|
||||
AdaptiveSamplingBenchmarkPublisher::AdaptiveSamplingBenchmarkPublisher(const std::string& benchmark_folder,
|
||||
const std::string& pixels_to_record_filename)
|
||||
: image_index_(0)
|
||||
{
|
||||
ze::openOutputFileStream(ze::joinPath(benchmark_folder, "events.txt"),
|
||||
&events_file_);
|
||||
AdaptiveSamplingBenchmarkPublisher::AdaptiveSamplingBenchmarkPublisher(
|
||||
const std::string& benchmark_folder,
|
||||
const std::string& pixels_to_record_filename
|
||||
)
|
||||
: image_index_(0) {
|
||||
ze::openOutputFileStream(
|
||||
ze::joinPath(benchmark_folder, "events.txt"),
|
||||
&events_file_
|
||||
);
|
||||
|
||||
ze::openOutputFileStream(ze::joinPath(benchmark_folder, "images.txt"),
|
||||
&images_file_);
|
||||
ze::openOutputFileStream(
|
||||
ze::joinPath(benchmark_folder, "images.txt"),
|
||||
&images_file_
|
||||
);
|
||||
|
||||
ze::openOutputFileStream(ze::joinPath(benchmark_folder, "pixel_intensities.txt"),
|
||||
&pixel_intensities_file_);
|
||||
ze::openOutputFileStream(
|
||||
ze::joinPath(benchmark_folder, "pixel_intensities.txt"),
|
||||
&pixel_intensities_file_
|
||||
);
|
||||
|
||||
ze::openOutputFileStream(ze::joinPath(benchmark_folder, "optic_flows.txt"),
|
||||
&optic_flows_file_);
|
||||
ze::openOutputFileStream(
|
||||
ze::joinPath(benchmark_folder, "optic_flows.txt"),
|
||||
&optic_flows_file_
|
||||
);
|
||||
|
||||
// Load and parse the file containing the list of pixel locations
|
||||
// whose intensity values to record
|
||||
std::ifstream pixels_to_record_file;
|
||||
if(pixels_to_record_filename != "")
|
||||
{
|
||||
ze::openFileStream(pixels_to_record_filename, &pixels_to_record_file);
|
||||
// Load and parse the file containing the list of pixel locations
|
||||
// whose intensity values to record
|
||||
std::ifstream pixels_to_record_file;
|
||||
if (pixels_to_record_filename != "") {
|
||||
ze::openFileStream(
|
||||
pixels_to_record_filename,
|
||||
&pixels_to_record_file
|
||||
);
|
||||
|
||||
int x, y;
|
||||
LOG(INFO) << "Pixels that will be recorded: ";
|
||||
while(pixels_to_record_file >> x >> y)
|
||||
{
|
||||
LOG(INFO) << x << " , " << y;
|
||||
pixels_to_record_.push_back(PixelLocation(x,y));
|
||||
int x, y;
|
||||
LOG(INFO) << "Pixels that will be recorded: ";
|
||||
while (pixels_to_record_file >> x >> y) {
|
||||
LOG(INFO) << x << " , " << y;
|
||||
pixels_to_record_.push_back(PixelLocation(x, y));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
Publisher::Ptr AdaptiveSamplingBenchmarkPublisher::createFromGflags()
|
||||
{
|
||||
if(FLAGS_adaptive_sampling_benchmark_folder == "")
|
||||
{
|
||||
LOG(WARNING) << "Empty benchmark folder string: will not write benchmark files";
|
||||
return nullptr;
|
||||
}
|
||||
Publisher::Ptr AdaptiveSamplingBenchmarkPublisher::createFromGflags() {
|
||||
if (FLAGS_adaptive_sampling_benchmark_folder == "") {
|
||||
LOG(WARNING) << "Empty benchmark folder string: will not write "
|
||||
"benchmark files";
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
return std::make_shared<AdaptiveSamplingBenchmarkPublisher>(FLAGS_adaptive_sampling_benchmark_folder,
|
||||
FLAGS_adaptive_sampling_benchmark_pixels_to_record_file);
|
||||
}
|
||||
return std::make_shared<AdaptiveSamplingBenchmarkPublisher>(
|
||||
FLAGS_adaptive_sampling_benchmark_folder,
|
||||
FLAGS_adaptive_sampling_benchmark_pixels_to_record_file
|
||||
);
|
||||
}
|
||||
|
||||
AdaptiveSamplingBenchmarkPublisher::~AdaptiveSamplingBenchmarkPublisher()
|
||||
{
|
||||
// finish writing files
|
||||
events_file_.close();
|
||||
images_file_.close();
|
||||
pixel_intensities_file_.close();
|
||||
optic_flows_file_.close();
|
||||
}
|
||||
AdaptiveSamplingBenchmarkPublisher::~AdaptiveSamplingBenchmarkPublisher() {
|
||||
// finish writing files
|
||||
events_file_.close();
|
||||
images_file_.close();
|
||||
pixel_intensities_file_.close();
|
||||
optic_flows_file_.close();
|
||||
}
|
||||
|
||||
void AdaptiveSamplingBenchmarkPublisher::imageCallback(const ImagePtrVector& images, Time t)
|
||||
{
|
||||
CHECK_EQ(images.size(), 1);
|
||||
images_file_ << t << std::endl;
|
||||
void AdaptiveSamplingBenchmarkPublisher::imageCallback(
|
||||
const ImagePtrVector& images, Time t
|
||||
) {
|
||||
CHECK_EQ(images.size(), 1);
|
||||
images_file_ << t << std::endl;
|
||||
|
||||
ImagePtr img = images[0];
|
||||
cv::Mat img_8bit;
|
||||
img->convertTo(img_8bit, CV_8U, 255);
|
||||
ImagePtr img = images[0];
|
||||
cv::Mat img_8bit;
|
||||
img->convertTo(img_8bit, CV_8U, 255);
|
||||
|
||||
if(image_index_ == 0)
|
||||
{
|
||||
static const std::vector<int> compression_params = {cv::IMWRITE_PNG_COMPRESSION, 0};
|
||||
if (image_index_ == 0) {
|
||||
static const std::vector<int> compression_params = {
|
||||
cv::IMWRITE_PNG_COMPRESSION,
|
||||
0};
|
||||
|
||||
std::stringstream ss;
|
||||
ss << ze::joinPath(FLAGS_adaptive_sampling_benchmark_folder, "image_");
|
||||
ss << image_index_ << ".png";
|
||||
std::stringstream ss;
|
||||
ss << ze::joinPath(
|
||||
FLAGS_adaptive_sampling_benchmark_folder,
|
||||
"image_"
|
||||
);
|
||||
ss << image_index_ << ".png";
|
||||
|
||||
LOG(INFO) << ss.str();
|
||||
cv::imwrite(ss.str(), img_8bit, compression_params);
|
||||
}
|
||||
LOG(INFO) << ss.str();
|
||||
cv::imwrite(ss.str(), img_8bit, compression_params);
|
||||
}
|
||||
|
||||
for(const PixelLocation& pixel_loc : pixels_to_record_)
|
||||
{
|
||||
// write line in the form "x y I(x,y)"
|
||||
const int x = pixel_loc.first;
|
||||
const int y = pixel_loc.second;
|
||||
pixel_intensities_file_ << x << " "
|
||||
<< y << " "
|
||||
<< (*images[0])(y,x) << std::endl;
|
||||
}
|
||||
for (const PixelLocation& pixel_loc : pixels_to_record_) {
|
||||
// write line in the form "x y I(x,y)"
|
||||
const int x = pixel_loc.first;
|
||||
const int y = pixel_loc.second;
|
||||
pixel_intensities_file_ << x << " " << y << " "
|
||||
<< (*images[0])(y, x) << std::endl;
|
||||
}
|
||||
|
||||
image_index_++;
|
||||
}
|
||||
image_index_++;
|
||||
}
|
||||
|
||||
void AdaptiveSamplingBenchmarkPublisher::opticFlowCallback(const OpticFlowPtrVector& optic_flows, Time t)
|
||||
{
|
||||
CHECK_EQ(optic_flows.size(), 1);
|
||||
for(const PixelLocation& pixel_loc : pixels_to_record_)
|
||||
{
|
||||
// write line in the form "x y optic_flow(x,y)[0] optic_flow(x,y)[1]"
|
||||
const int x = pixel_loc.first;
|
||||
const int y = pixel_loc.second;
|
||||
optic_flows_file_ << x << " "
|
||||
<< y << " "
|
||||
<< (*optic_flows[0])(y,x)[0] << " "
|
||||
<< (*optic_flows[0])(y,x)[1]
|
||||
<< std::endl;
|
||||
}
|
||||
}
|
||||
void AdaptiveSamplingBenchmarkPublisher::opticFlowCallback(
|
||||
const OpticFlowPtrVector& optic_flows, Time t
|
||||
) {
|
||||
CHECK_EQ(optic_flows.size(), 1);
|
||||
for (const PixelLocation& pixel_loc : pixels_to_record_) {
|
||||
// write line in the form "x y optic_flow(x,y)[0]
|
||||
// optic_flow(x,y)[1]"
|
||||
const int x = pixel_loc.first;
|
||||
const int y = pixel_loc.second;
|
||||
optic_flows_file_ << x << " " << y << " "
|
||||
<< (*optic_flows[0])(y, x)[0] << " "
|
||||
<< (*optic_flows[0])(y, x)[1] << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
void AdaptiveSamplingBenchmarkPublisher::eventsCallback(
|
||||
const EventsVector& events
|
||||
) {
|
||||
CHECK_EQ(events.size(), 1);
|
||||
|
||||
void AdaptiveSamplingBenchmarkPublisher::eventsCallback(const EventsVector& events)
|
||||
{
|
||||
CHECK_EQ(events.size(), 1);
|
||||
|
||||
for(const Event& e : events[0])
|
||||
{
|
||||
events_file_ << e.t << " " << e.x << " " << e.y << " " << (e.pol? 1 : 0) << std::endl;
|
||||
}
|
||||
}
|
||||
for (const Event& e : events[0]) {
|
||||
events_file_ << e.t << " " << e.x << " " << e.y << " "
|
||||
<< (e.pol ? 1 : 0) << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace event_camera_simulator
|
||||
|
@ -1,400 +1,417 @@
|
||||
#include <esim/visualization/ros_publisher.hpp>
|
||||
#include <esim/common/utils.hpp>
|
||||
#include <ze/common/time_conversions.hpp>
|
||||
#include <esim/visualization/ros_publisher.hpp>
|
||||
#include <esim/visualization/ros_utils.hpp>
|
||||
#include <minkindr_conversions/kindr_msg.h>
|
||||
#include <minkindr_conversions/kindr_tf.h>
|
||||
|
||||
#include <gflags/gflags.h>
|
||||
#include <glog/logging.h>
|
||||
#include <minkindr_conversions/kindr_msg.h>
|
||||
#include <minkindr_conversions/kindr_tf.h>
|
||||
#include <ze/common/time_conversions.hpp>
|
||||
|
||||
DEFINE_double(ros_publisher_camera_info_rate, 0,
|
||||
"Camera info (maximum) publish rate, in Hz");
|
||||
DEFINE_double(
|
||||
ros_publisher_camera_info_rate,
|
||||
0,
|
||||
"Camera info (maximum) publish rate, in Hz"
|
||||
);
|
||||
|
||||
DEFINE_double(ros_publisher_frame_rate, 30,
|
||||
"(Maximum) frame rate, in Hz");
|
||||
DEFINE_double(ros_publisher_frame_rate, 30, "(Maximum) frame rate, in Hz");
|
||||
|
||||
DEFINE_double(ros_publisher_depth_rate, 0,
|
||||
"(Maximum) depthmap publish rate, in Hz");
|
||||
DEFINE_double(
|
||||
ros_publisher_depth_rate, 0, "(Maximum) depthmap publish rate, in Hz"
|
||||
);
|
||||
|
||||
DEFINE_double(ros_publisher_pointcloud_rate, 0,
|
||||
"(Maximum) point cloud publish rate, in Hz");
|
||||
DEFINE_double(
|
||||
ros_publisher_pointcloud_rate,
|
||||
0,
|
||||
"(Maximum) point cloud publish rate, in Hz"
|
||||
);
|
||||
|
||||
DEFINE_double(ros_publisher_optic_flow_rate, 0,
|
||||
"(Maximum) optic flow map publish rate, in Hz");
|
||||
DEFINE_double(
|
||||
ros_publisher_optic_flow_rate,
|
||||
0,
|
||||
"(Maximum) optic flow map publish rate, in Hz"
|
||||
);
|
||||
|
||||
namespace event_camera_simulator {
|
||||
|
||||
RosPublisher::RosPublisher(size_t num_cameras)
|
||||
{
|
||||
CHECK_GE(num_cameras, 1);
|
||||
num_cameras_ = num_cameras;
|
||||
sensor_sizes_ = std::vector<cv::Size>(num_cameras_);
|
||||
RosPublisher::RosPublisher(size_t num_cameras) {
|
||||
CHECK_GE(num_cameras, 1);
|
||||
num_cameras_ = num_cameras;
|
||||
sensor_sizes_ = std::vector<cv::Size>(num_cameras_);
|
||||
|
||||
// Initialize ROS if it was not initialized before.
|
||||
if(!ros::isInitialized())
|
||||
{
|
||||
VLOG(1) << "Initializing ROS";
|
||||
int argc = 0;
|
||||
ros::init(argc, nullptr, std::string("ros_publisher"), ros::init_options::NoSigintHandler);
|
||||
}
|
||||
// Initialize ROS if it was not initialized before.
|
||||
if (!ros::isInitialized()) {
|
||||
VLOG(1) << "Initializing ROS";
|
||||
int argc = 0;
|
||||
ros::init(
|
||||
argc,
|
||||
nullptr,
|
||||
std::string("ros_publisher"),
|
||||
ros::init_options::NoSigintHandler
|
||||
);
|
||||
}
|
||||
|
||||
// Create node and subscribe.
|
||||
nh_.reset(new ros::NodeHandle(""));
|
||||
it_.reset(new image_transport::ImageTransport(*nh_));
|
||||
// Create node and subscribe.
|
||||
nh_.reset(new ros::NodeHandle(""));
|
||||
it_.reset(new image_transport::ImageTransport(*nh_));
|
||||
|
||||
// Setup ROS publishers for images, events, poses, depth maps, camera info, etc.
|
||||
for(size_t i=0; i<num_cameras_; ++i)
|
||||
{
|
||||
event_pub_.emplace_back(
|
||||
new ros::Publisher(
|
||||
nh_->advertise<dvs_msgs::EventArray> (getTopicName(i, "events"), 0)));
|
||||
// Setup ROS publishers for images, events, poses, depth maps, camera
|
||||
// info, etc.
|
||||
for (size_t i = 0; i < num_cameras_; ++i) {
|
||||
event_pub_.emplace_back(
|
||||
new ros::Publisher(nh_->advertise<dvs_msgs::EventArray>(
|
||||
getTopicName(i, "events"),
|
||||
0
|
||||
))
|
||||
);
|
||||
|
||||
image_pub_.emplace_back(
|
||||
new image_transport::Publisher(
|
||||
it_->advertise(getTopicName(i, "image_raw"), 0)));
|
||||
image_pub_.emplace_back(new image_transport::Publisher(
|
||||
it_->advertise(getTopicName(i, "image_raw"), 0)
|
||||
));
|
||||
|
||||
image_corrupted_pub_.emplace_back(
|
||||
new image_transport::Publisher(
|
||||
it_->advertise(getTopicName(i, "image_corrupted"), 0)));
|
||||
image_corrupted_pub_.emplace_back(new image_transport::Publisher(
|
||||
it_->advertise(getTopicName(i, "image_corrupted"), 0)
|
||||
));
|
||||
|
||||
depthmap_pub_.emplace_back(
|
||||
new image_transport::Publisher(
|
||||
it_->advertise(getTopicName(i, "depthmap"), 0)));
|
||||
depthmap_pub_.emplace_back(new image_transport::Publisher(
|
||||
it_->advertise(getTopicName(i, "depthmap"), 0)
|
||||
));
|
||||
|
||||
optic_flow_pub_.emplace_back(
|
||||
new ros::Publisher(
|
||||
nh_->advertise<esim_msgs::OpticFlow> (getTopicName(i, "optic_flow"), 0)));
|
||||
optic_flow_pub_.emplace_back(
|
||||
new ros::Publisher(nh_->advertise<esim_msgs::OpticFlow>(
|
||||
getTopicName(i, "optic_flow"),
|
||||
0
|
||||
))
|
||||
);
|
||||
|
||||
camera_info_pub_.emplace_back(
|
||||
new ros::Publisher(
|
||||
nh_->advertise<sensor_msgs::CameraInfo> (getTopicName(i, "camera_info"), 0)));
|
||||
camera_info_pub_.emplace_back(
|
||||
new ros::Publisher(nh_->advertise<sensor_msgs::CameraInfo>(
|
||||
getTopicName(i, "camera_info"),
|
||||
0
|
||||
))
|
||||
);
|
||||
|
||||
twist_pub_.emplace_back(
|
||||
new ros::Publisher(
|
||||
nh_->advertise<geometry_msgs::TwistStamped> (getTopicName(i, "twist"), 0)));
|
||||
twist_pub_.emplace_back(
|
||||
new ros::Publisher(nh_->advertise<geometry_msgs::TwistStamped>(
|
||||
getTopicName(i, "twist"),
|
||||
0
|
||||
))
|
||||
);
|
||||
|
||||
pointcloud_pub_.emplace_back(
|
||||
new ros::Publisher(
|
||||
nh_->advertise<pcl::PointCloud<pcl::PointXYZ>> (getTopicName(i, "pointcloud"), 0)));
|
||||
}
|
||||
pointcloud_pub_.emplace_back(new ros::Publisher(
|
||||
nh_->advertise<pcl::PointCloud<pcl::PointXYZ>>(
|
||||
getTopicName(i, "pointcloud"),
|
||||
0
|
||||
)
|
||||
));
|
||||
}
|
||||
|
||||
pose_pub_.reset(new ros::Publisher(nh_->advertise<geometry_msgs::PoseStamped> ("pose", 0)));
|
||||
imu_pub_.reset(new ros::Publisher(nh_->advertise<sensor_msgs::Imu> ("imu", 0)));
|
||||
tf_broadcaster_.reset(new tf::TransformBroadcaster());
|
||||
pose_pub_.reset(new ros::Publisher(
|
||||
nh_->advertise<geometry_msgs::PoseStamped>("pose", 0)
|
||||
));
|
||||
imu_pub_.reset(
|
||||
new ros::Publisher(nh_->advertise<sensor_msgs::Imu>("imu", 0))
|
||||
);
|
||||
tf_broadcaster_.reset(new tf::TransformBroadcaster());
|
||||
|
||||
last_published_camera_info_time_ = 0;
|
||||
last_published_image_time_ = 0;
|
||||
last_published_corrupted_image_time_ = 0;
|
||||
last_published_depthmap_time_ = 0;
|
||||
last_published_optic_flow_time_ = 0;
|
||||
last_published_pointcloud_time_ = 0;
|
||||
}
|
||||
|
||||
RosPublisher::~RosPublisher()
|
||||
{
|
||||
for(size_t i=0; i<num_cameras_; ++i)
|
||||
{
|
||||
event_pub_[i]->shutdown();
|
||||
image_pub_[i]->shutdown();
|
||||
image_corrupted_pub_[i]->shutdown();
|
||||
depthmap_pub_[i]->shutdown();
|
||||
optic_flow_pub_[i]->shutdown();
|
||||
camera_info_pub_[i]->shutdown();
|
||||
twist_pub_[i]->shutdown();
|
||||
pointcloud_pub_[i]->shutdown();
|
||||
}
|
||||
pose_pub_->shutdown();
|
||||
|
||||
ros::shutdown();
|
||||
}
|
||||
|
||||
void RosPublisher::pointcloudCallback(const PointCloudVector& pointclouds, Time t)
|
||||
{
|
||||
CHECK_EQ(pointcloud_pub_.size(), num_cameras_);
|
||||
CHECK_EQ(pointclouds.size(), num_cameras_);
|
||||
|
||||
for(size_t i=0; i<num_cameras_; ++i)
|
||||
{
|
||||
const PointCloud& pcl_camera = pointclouds[i];
|
||||
|
||||
CHECK(pointcloud_pub_[i]);
|
||||
if(pointcloud_pub_[i]->getNumSubscribers() == 0)
|
||||
{
|
||||
continue;
|
||||
last_published_camera_info_time_ = 0;
|
||||
last_published_image_time_ = 0;
|
||||
last_published_corrupted_image_time_ = 0;
|
||||
last_published_depthmap_time_ = 0;
|
||||
last_published_optic_flow_time_ = 0;
|
||||
last_published_pointcloud_time_ = 0;
|
||||
}
|
||||
|
||||
Duration min_time_interval_between_published_pointclouds_
|
||||
= ze::secToNanosec(1.0 / FLAGS_ros_publisher_pointcloud_rate);
|
||||
if(last_published_pointcloud_time_ > 0 && t - last_published_pointcloud_time_ < min_time_interval_between_published_pointclouds_)
|
||||
{
|
||||
return;
|
||||
RosPublisher::~RosPublisher() {
|
||||
for (size_t i = 0; i < num_cameras_; ++i) {
|
||||
event_pub_[i]->shutdown();
|
||||
image_pub_[i]->shutdown();
|
||||
image_corrupted_pub_[i]->shutdown();
|
||||
depthmap_pub_[i]->shutdown();
|
||||
optic_flow_pub_[i]->shutdown();
|
||||
camera_info_pub_[i]->shutdown();
|
||||
twist_pub_[i]->shutdown();
|
||||
pointcloud_pub_[i]->shutdown();
|
||||
}
|
||||
pose_pub_->shutdown();
|
||||
|
||||
ros::shutdown();
|
||||
}
|
||||
|
||||
pcl::PointCloud<pcl::PointXYZRGB>::Ptr msg (new pcl::PointCloud<pcl::PointXYZRGB>);
|
||||
std::stringstream ss; ss << "cam" << i;
|
||||
pointCloudToMsg(pointclouds[i], ss.str(), t, msg);
|
||||
pointcloud_pub_[i]->publish(msg);
|
||||
}
|
||||
void RosPublisher::pointcloudCallback(
|
||||
const PointCloudVector& pointclouds, Time t
|
||||
) {
|
||||
CHECK_EQ(pointcloud_pub_.size(), num_cameras_);
|
||||
CHECK_EQ(pointclouds.size(), num_cameras_);
|
||||
|
||||
last_published_pointcloud_time_ = t;
|
||||
}
|
||||
for (size_t i = 0; i < num_cameras_; ++i) {
|
||||
const PointCloud& pcl_camera = pointclouds[i];
|
||||
|
||||
void RosPublisher::imageCallback(const ImagePtrVector& images, Time t)
|
||||
{
|
||||
CHECK_EQ(image_pub_.size(), num_cameras_);
|
||||
CHECK(pointcloud_pub_[i]);
|
||||
if (pointcloud_pub_[i]->getNumSubscribers() == 0)
|
||||
continue;
|
||||
|
||||
for(size_t i=0; i<num_cameras_; ++i)
|
||||
{
|
||||
sensor_sizes_[i] = images[i]->size();
|
||||
Duration min_time_interval_between_published_pointclouds_ =
|
||||
ze::secToNanosec(1.0 / FLAGS_ros_publisher_pointcloud_rate);
|
||||
if (last_published_pointcloud_time_ > 0
|
||||
&& t - last_published_pointcloud_time_
|
||||
< min_time_interval_between_published_pointclouds_) {
|
||||
return;
|
||||
}
|
||||
|
||||
CHECK(image_pub_[i]);
|
||||
if(image_pub_[i]->getNumSubscribers() == 0)
|
||||
{
|
||||
continue;
|
||||
pcl::PointCloud<pcl::PointXYZRGB>::Ptr
|
||||
msg(new pcl::PointCloud<pcl::PointXYZRGB>);
|
||||
std::stringstream ss;
|
||||
ss << "cam" << i;
|
||||
pointCloudToMsg(pointclouds[i], ss.str(), t, msg);
|
||||
pointcloud_pub_[i]->publish(msg);
|
||||
}
|
||||
|
||||
last_published_pointcloud_time_ = t;
|
||||
}
|
||||
|
||||
static const Duration min_time_interval_between_published_images_
|
||||
= ze::secToNanosec(1.0 / FLAGS_ros_publisher_frame_rate);
|
||||
if(last_published_image_time_ > 0 && t - last_published_image_time_ < min_time_interval_between_published_images_)
|
||||
{
|
||||
return;
|
||||
void RosPublisher::imageCallback(const ImagePtrVector& images, Time t) {
|
||||
CHECK_EQ(image_pub_.size(), num_cameras_);
|
||||
|
||||
for (size_t i = 0; i < num_cameras_; ++i) {
|
||||
sensor_sizes_[i] = images[i]->size();
|
||||
|
||||
CHECK(image_pub_[i]);
|
||||
if (image_pub_[i]->getNumSubscribers() == 0)
|
||||
continue;
|
||||
|
||||
static const Duration min_time_interval_between_published_images_ =
|
||||
ze::secToNanosec(1.0 / FLAGS_ros_publisher_frame_rate);
|
||||
if (last_published_image_time_ > 0
|
||||
&& t - last_published_image_time_
|
||||
< min_time_interval_between_published_images_) {
|
||||
return;
|
||||
}
|
||||
|
||||
if (images[i]) {
|
||||
sensor_msgs::ImagePtr msg;
|
||||
imageToMsg(*images[i], t, msg);
|
||||
image_pub_[i]->publish(msg);
|
||||
}
|
||||
}
|
||||
|
||||
last_published_image_time_ = t;
|
||||
}
|
||||
|
||||
if(images[i])
|
||||
{
|
||||
sensor_msgs::ImagePtr msg;
|
||||
imageToMsg(*images[i], t, msg);
|
||||
image_pub_[i]->publish(msg);
|
||||
}
|
||||
}
|
||||
void RosPublisher::imageCorruptedCallback(
|
||||
const ImagePtrVector& corrupted_images, Time t
|
||||
) {
|
||||
CHECK_EQ(image_corrupted_pub_.size(), num_cameras_);
|
||||
|
||||
last_published_image_time_ = t;
|
||||
}
|
||||
for (size_t i = 0; i < num_cameras_; ++i) {
|
||||
CHECK(image_corrupted_pub_[i]);
|
||||
if (image_corrupted_pub_[i]->getNumSubscribers() == 0)
|
||||
continue;
|
||||
|
||||
void RosPublisher::imageCorruptedCallback(const ImagePtrVector& corrupted_images, Time t)
|
||||
{
|
||||
CHECK_EQ(image_corrupted_pub_.size(), num_cameras_);
|
||||
static const Duration min_time_interval_between_published_images_ =
|
||||
ze::secToNanosec(1.0 / FLAGS_ros_publisher_frame_rate);
|
||||
if (last_published_corrupted_image_time_ > 0
|
||||
&& t - last_published_corrupted_image_time_
|
||||
< min_time_interval_between_published_images_) {
|
||||
return;
|
||||
}
|
||||
|
||||
for(size_t i=0; i<num_cameras_; ++i)
|
||||
{
|
||||
CHECK(image_corrupted_pub_[i]);
|
||||
if(image_corrupted_pub_[i]->getNumSubscribers() == 0)
|
||||
{
|
||||
continue;
|
||||
if (corrupted_images[i]) {
|
||||
sensor_msgs::ImagePtr msg;
|
||||
imageToMsg(*corrupted_images[i], t, msg);
|
||||
image_corrupted_pub_[i]->publish(msg);
|
||||
}
|
||||
}
|
||||
|
||||
last_published_corrupted_image_time_ = t;
|
||||
}
|
||||
|
||||
static const Duration min_time_interval_between_published_images_
|
||||
= ze::secToNanosec(1.0 / FLAGS_ros_publisher_frame_rate);
|
||||
if(last_published_corrupted_image_time_ > 0 && t - last_published_corrupted_image_time_ < min_time_interval_between_published_images_)
|
||||
{
|
||||
return;
|
||||
void
|
||||
RosPublisher::depthmapCallback(const DepthmapPtrVector& depthmaps, Time t) {
|
||||
CHECK_EQ(depthmap_pub_.size(), num_cameras_);
|
||||
|
||||
for (size_t i = 0; i < num_cameras_; ++i) {
|
||||
CHECK(depthmap_pub_[i]);
|
||||
if (depthmap_pub_[i]->getNumSubscribers() == 0)
|
||||
continue;
|
||||
|
||||
static const Duration
|
||||
min_time_interval_between_published_depthmaps_ =
|
||||
ze::secToNanosec(1.0 / FLAGS_ros_publisher_depth_rate);
|
||||
if (last_published_depthmap_time_ > 0
|
||||
&& t - last_published_depthmap_time_
|
||||
< min_time_interval_between_published_depthmaps_) {
|
||||
return;
|
||||
}
|
||||
|
||||
if (depthmaps[i]) {
|
||||
sensor_msgs::ImagePtr msg;
|
||||
depthmapToMsg(*depthmaps[i], t, msg);
|
||||
depthmap_pub_[i]->publish(msg);
|
||||
}
|
||||
}
|
||||
|
||||
last_published_depthmap_time_ = t;
|
||||
}
|
||||
|
||||
if(corrupted_images[i])
|
||||
{
|
||||
sensor_msgs::ImagePtr msg;
|
||||
imageToMsg(*corrupted_images[i], t, msg);
|
||||
image_corrupted_pub_[i]->publish(msg);
|
||||
}
|
||||
}
|
||||
void RosPublisher::opticFlowCallback(
|
||||
const OpticFlowPtrVector& optic_flows, Time t
|
||||
) {
|
||||
CHECK_EQ(optic_flow_pub_.size(), num_cameras_);
|
||||
|
||||
last_published_corrupted_image_time_ = t;
|
||||
}
|
||||
for (size_t i = 0; i < num_cameras_; ++i) {
|
||||
CHECK(optic_flow_pub_[i]);
|
||||
if (optic_flow_pub_[i]->getNumSubscribers() == 0)
|
||||
continue;
|
||||
|
||||
void RosPublisher::depthmapCallback(const DepthmapPtrVector& depthmaps, Time t)
|
||||
{
|
||||
CHECK_EQ(depthmap_pub_.size(), num_cameras_);
|
||||
static const Duration
|
||||
min_time_interval_between_published_optic_flows_ =
|
||||
(min_time_interval_between_published_optic_flows_ > 0)
|
||||
? ze::secToNanosec(
|
||||
1.0 / FLAGS_ros_publisher_optic_flow_rate
|
||||
)
|
||||
: 0;
|
||||
if (min_time_interval_between_published_optic_flows_ > 0
|
||||
&& last_published_optic_flow_time_ > 0
|
||||
&& t - last_published_optic_flow_time_
|
||||
< min_time_interval_between_published_optic_flows_) {
|
||||
return;
|
||||
}
|
||||
|
||||
for(size_t i=0; i<num_cameras_; ++i)
|
||||
{
|
||||
CHECK(depthmap_pub_[i]);
|
||||
if(depthmap_pub_[i]->getNumSubscribers() == 0)
|
||||
{
|
||||
continue;
|
||||
if (optic_flows[i]) {
|
||||
esim_msgs::OpticFlow::Ptr msg;
|
||||
msg.reset(new esim_msgs::OpticFlow);
|
||||
opticFlowToMsg(*optic_flows[i], t, msg);
|
||||
optic_flow_pub_[i]->publish(msg);
|
||||
}
|
||||
}
|
||||
|
||||
last_published_optic_flow_time_ = t;
|
||||
}
|
||||
|
||||
static const Duration min_time_interval_between_published_depthmaps_
|
||||
= ze::secToNanosec(1.0 / FLAGS_ros_publisher_depth_rate);
|
||||
if(last_published_depthmap_time_ > 0 && t - last_published_depthmap_time_ < min_time_interval_between_published_depthmaps_)
|
||||
{
|
||||
return;
|
||||
void RosPublisher::eventsCallback(const EventsVector& events) {
|
||||
CHECK_EQ(event_pub_.size(), num_cameras_);
|
||||
|
||||
for (size_t i = 0; i < num_cameras_; ++i) {
|
||||
if (sensor_sizes_[i].width == 0 || sensor_sizes_[i].height == 0)
|
||||
continue;
|
||||
|
||||
if (events[i].empty())
|
||||
continue;
|
||||
|
||||
CHECK(event_pub_[i]);
|
||||
if (event_pub_[i]->getNumSubscribers() == 0)
|
||||
continue;
|
||||
|
||||
dvs_msgs::EventArrayPtr msg;
|
||||
msg.reset(new dvs_msgs::EventArray);
|
||||
eventsToMsg(
|
||||
events[i],
|
||||
sensor_sizes_[i].width,
|
||||
sensor_sizes_[i].height,
|
||||
msg
|
||||
);
|
||||
event_pub_[i]->publish(msg);
|
||||
}
|
||||
}
|
||||
|
||||
if(depthmaps[i])
|
||||
{
|
||||
sensor_msgs::ImagePtr msg;
|
||||
depthmapToMsg(*depthmaps[i], t, msg);
|
||||
depthmap_pub_[i]->publish(msg);
|
||||
}
|
||||
}
|
||||
void RosPublisher::poseCallback(
|
||||
const Transformation& T_W_B, const TransformationVector& T_W_Cs, Time t
|
||||
) {
|
||||
if (T_W_Cs.size() != num_cameras_) {
|
||||
LOG(WARNING
|
||||
) << "Number of poses is different than number of cameras."
|
||||
<< "Will not output poses.";
|
||||
return;
|
||||
}
|
||||
|
||||
last_published_depthmap_time_ = t;
|
||||
}
|
||||
// Publish to tf
|
||||
tf::StampedTransform bt;
|
||||
bt.child_frame_id_ = "body";
|
||||
bt.frame_id_ = "map";
|
||||
bt.stamp_ = toRosTime(t);
|
||||
tf::transformKindrToTF(T_W_B, &bt);
|
||||
tf_broadcaster_->sendTransform(bt);
|
||||
|
||||
for (size_t i = 0; i < num_cameras_; ++i) {
|
||||
std::stringstream ss;
|
||||
ss << "cam" << i;
|
||||
tf::StampedTransform bt;
|
||||
bt.child_frame_id_ = ss.str();
|
||||
bt.frame_id_ = "map";
|
||||
bt.stamp_ = toRosTime(t);
|
||||
tf::transformKindrToTF(T_W_Cs[i], &bt);
|
||||
tf_broadcaster_->sendTransform(bt);
|
||||
}
|
||||
|
||||
void RosPublisher::opticFlowCallback(const OpticFlowPtrVector& optic_flows, Time t)
|
||||
{
|
||||
CHECK_EQ(optic_flow_pub_.size(), num_cameras_);
|
||||
|
||||
for(size_t i=0; i<num_cameras_; ++i)
|
||||
{
|
||||
CHECK(optic_flow_pub_[i]);
|
||||
if(optic_flow_pub_[i]->getNumSubscribers() == 0)
|
||||
{
|
||||
continue;
|
||||
// Publish pose message
|
||||
geometry_msgs::PoseStamped pose_stamped_msg;
|
||||
tf::poseStampedKindrToMsg(
|
||||
T_W_B,
|
||||
toRosTime(t),
|
||||
"map",
|
||||
&pose_stamped_msg
|
||||
);
|
||||
pose_pub_->publish(pose_stamped_msg);
|
||||
}
|
||||
|
||||
static const Duration min_time_interval_between_published_optic_flows_
|
||||
= (min_time_interval_between_published_optic_flows_ > 0) ? ze::secToNanosec(1.0 / FLAGS_ros_publisher_optic_flow_rate) : 0;
|
||||
if(min_time_interval_between_published_optic_flows_ > 0 && last_published_optic_flow_time_ > 0 && t - last_published_optic_flow_time_ < min_time_interval_between_published_optic_flows_)
|
||||
{
|
||||
return;
|
||||
void RosPublisher::twistCallback(
|
||||
const AngularVelocityVector& ws, const LinearVelocityVector& vs, Time t
|
||||
) {
|
||||
if (ws.size() != num_cameras_ || vs.size() != num_cameras_) {
|
||||
LOG(WARNING
|
||||
) << "Number of twists is different than number of cameras."
|
||||
<< "Will not output twists.";
|
||||
return;
|
||||
}
|
||||
CHECK_EQ(ws.size(), num_cameras_);
|
||||
CHECK_EQ(vs.size(), num_cameras_);
|
||||
CHECK_EQ(twist_pub_.size(), num_cameras_);
|
||||
|
||||
for (size_t i = 0; i < num_cameras_; ++i) {
|
||||
CHECK(twist_pub_[i]);
|
||||
if (twist_pub_[i]->getNumSubscribers() == 0)
|
||||
continue;
|
||||
|
||||
const geometry_msgs::TwistStamped msg = twistToMsg(ws[i], vs[i], t);
|
||||
twist_pub_[i]->publish(msg);
|
||||
}
|
||||
}
|
||||
|
||||
if(optic_flows[i])
|
||||
{
|
||||
esim_msgs::OpticFlow::Ptr msg;
|
||||
msg.reset(new esim_msgs::OpticFlow);
|
||||
opticFlowToMsg(*optic_flows[i], t, msg);
|
||||
optic_flow_pub_[i]->publish(msg);
|
||||
}
|
||||
}
|
||||
void
|
||||
RosPublisher::imuCallback(const Vector3& acc, const Vector3& gyr, Time t) {
|
||||
if (imu_pub_->getNumSubscribers() == 0)
|
||||
return;
|
||||
|
||||
last_published_optic_flow_time_ = t;
|
||||
}
|
||||
|
||||
void RosPublisher::eventsCallback(const EventsVector& events)
|
||||
{
|
||||
CHECK_EQ(event_pub_.size(), num_cameras_);
|
||||
|
||||
for(size_t i=0; i<num_cameras_; ++i)
|
||||
{
|
||||
if(sensor_sizes_[i].width == 0 || sensor_sizes_[i].height == 0)
|
||||
{
|
||||
continue;
|
||||
const sensor_msgs::Imu msg = imuToMsg(acc, gyr, t);
|
||||
imu_pub_->publish(msg);
|
||||
}
|
||||
|
||||
if(events[i].empty())
|
||||
{
|
||||
continue;
|
||||
void RosPublisher::cameraInfoCallback(
|
||||
const ze::CameraRig::Ptr& camera_rig, Time t
|
||||
) {
|
||||
CHECK(camera_rig);
|
||||
CHECK_EQ(camera_rig->size(), num_cameras_);
|
||||
|
||||
static const Duration min_time_interval_between_published_camera_info_ =
|
||||
ze::secToNanosec(1.0 / FLAGS_ros_publisher_camera_info_rate);
|
||||
if (last_published_camera_info_time_ > 0
|
||||
&& t - last_published_camera_info_time_
|
||||
< min_time_interval_between_published_camera_info_) {
|
||||
return;
|
||||
}
|
||||
|
||||
for (size_t i = 0; i < num_cameras_; ++i) {
|
||||
CHECK(camera_info_pub_[i]);
|
||||
if (camera_info_pub_[i]->getNumSubscribers() == 0)
|
||||
continue;
|
||||
|
||||
sensor_msgs::CameraInfoPtr msg;
|
||||
msg.reset(new sensor_msgs::CameraInfo);
|
||||
cameraToMsg(camera_rig->atShared(i), t, msg);
|
||||
camera_info_pub_[i]->publish(msg);
|
||||
}
|
||||
|
||||
last_published_camera_info_time_ = t;
|
||||
}
|
||||
|
||||
CHECK(event_pub_[i]);
|
||||
if(event_pub_[i]->getNumSubscribers() == 0)
|
||||
{
|
||||
continue;
|
||||
}
|
||||
|
||||
dvs_msgs::EventArrayPtr msg;
|
||||
msg.reset(new dvs_msgs::EventArray);
|
||||
eventsToMsg(events[i], sensor_sizes_[i].width, sensor_sizes_[i].height, msg);
|
||||
event_pub_[i]->publish(msg);
|
||||
}
|
||||
}
|
||||
|
||||
void RosPublisher::poseCallback(const Transformation& T_W_B,
|
||||
const TransformationVector& T_W_Cs,
|
||||
Time t)
|
||||
{
|
||||
if(T_W_Cs.size() != num_cameras_)
|
||||
{
|
||||
LOG(WARNING) << "Number of poses is different than number of cameras."
|
||||
<< "Will not output poses.";
|
||||
return;
|
||||
}
|
||||
|
||||
// Publish to tf
|
||||
tf::StampedTransform bt;
|
||||
bt.child_frame_id_ = "body";
|
||||
bt.frame_id_ = "map";
|
||||
bt.stamp_ = toRosTime(t);
|
||||
tf::transformKindrToTF(T_W_B, &bt);
|
||||
tf_broadcaster_->sendTransform(bt);
|
||||
|
||||
for(size_t i=0; i<num_cameras_; ++i)
|
||||
{
|
||||
std::stringstream ss;
|
||||
ss << "cam" << i;
|
||||
tf::StampedTransform bt;
|
||||
bt.child_frame_id_ = ss.str();
|
||||
bt.frame_id_ = "map";
|
||||
bt.stamp_ = toRosTime(t);
|
||||
tf::transformKindrToTF(T_W_Cs[i], &bt);
|
||||
tf_broadcaster_->sendTransform(bt);
|
||||
}
|
||||
|
||||
// Publish pose message
|
||||
geometry_msgs::PoseStamped pose_stamped_msg;
|
||||
tf::poseStampedKindrToMsg(T_W_B, toRosTime(t), "map", &pose_stamped_msg);
|
||||
pose_pub_->publish(pose_stamped_msg);
|
||||
}
|
||||
|
||||
void RosPublisher::twistCallback(const AngularVelocityVector &ws, const LinearVelocityVector &vs, Time t)
|
||||
{
|
||||
if(ws.size() != num_cameras_
|
||||
|| vs.size() != num_cameras_)
|
||||
{
|
||||
LOG(WARNING) << "Number of twists is different than number of cameras."
|
||||
<< "Will not output twists.";
|
||||
return;
|
||||
}
|
||||
CHECK_EQ(ws.size(), num_cameras_);
|
||||
CHECK_EQ(vs.size(), num_cameras_);
|
||||
CHECK_EQ(twist_pub_.size(), num_cameras_);
|
||||
|
||||
for(size_t i=0; i<num_cameras_; ++i)
|
||||
{
|
||||
CHECK(twist_pub_[i]);
|
||||
if(twist_pub_[i]->getNumSubscribers() == 0)
|
||||
{
|
||||
continue;
|
||||
}
|
||||
|
||||
const geometry_msgs::TwistStamped msg = twistToMsg(ws[i], vs[i], t);
|
||||
twist_pub_[i]->publish(msg);
|
||||
}
|
||||
}
|
||||
|
||||
void RosPublisher::imuCallback(const Vector3& acc, const Vector3& gyr, Time t)
|
||||
{
|
||||
if(imu_pub_->getNumSubscribers() == 0)
|
||||
{
|
||||
return;
|
||||
}
|
||||
|
||||
const sensor_msgs::Imu msg = imuToMsg(acc, gyr, t);
|
||||
imu_pub_->publish(msg);
|
||||
}
|
||||
|
||||
void RosPublisher::cameraInfoCallback(const ze::CameraRig::Ptr& camera_rig, Time t)
|
||||
{
|
||||
CHECK(camera_rig);
|
||||
CHECK_EQ(camera_rig->size(), num_cameras_);
|
||||
|
||||
static const Duration min_time_interval_between_published_camera_info_
|
||||
= ze::secToNanosec(1.0 / FLAGS_ros_publisher_camera_info_rate);
|
||||
if(last_published_camera_info_time_ > 0 && t - last_published_camera_info_time_ < min_time_interval_between_published_camera_info_)
|
||||
{
|
||||
return;
|
||||
}
|
||||
|
||||
for(size_t i=0; i<num_cameras_; ++i)
|
||||
{
|
||||
CHECK(camera_info_pub_[i]);
|
||||
if(camera_info_pub_[i]->getNumSubscribers() == 0)
|
||||
{
|
||||
continue;
|
||||
}
|
||||
|
||||
sensor_msgs::CameraInfoPtr msg;
|
||||
msg.reset(new sensor_msgs::CameraInfo);
|
||||
cameraToMsg(camera_rig->atShared(i), t, msg);
|
||||
camera_info_pub_[i]->publish(msg);
|
||||
}
|
||||
|
||||
last_published_camera_info_time_ = t;
|
||||
|
||||
}
|
||||
|
||||
} // namespace event_camera_simulator
|
||||
|
@ -1,174 +1,169 @@
|
||||
#include <esim/visualization/ros_utils.hpp>
|
||||
#include <esim/common/utils.hpp>
|
||||
#include <pcl_conversions/pcl_conversions.h>
|
||||
#include <cv_bridge/cv_bridge.h>
|
||||
#include <esim/common/utils.hpp>
|
||||
#include <esim/visualization/ros_utils.hpp>
|
||||
#include <pcl_conversions/pcl_conversions.h>
|
||||
|
||||
namespace event_camera_simulator {
|
||||
|
||||
void pointCloudToMsg(const PointCloud& pointcloud, const std::string& frame_id, Time t, pcl::PointCloud<pcl::PointXYZRGB>::Ptr& msg)
|
||||
{
|
||||
CHECK(msg);
|
||||
msg->header.frame_id = frame_id;
|
||||
msg->height = pointcloud.size();
|
||||
msg->width = 1;
|
||||
for(auto& p_c : pointcloud)
|
||||
{
|
||||
pcl::PointXYZRGB p;
|
||||
p.x = p_c.xyz(0);
|
||||
p.y = p_c.xyz(1);
|
||||
p.z = p_c.xyz(2);
|
||||
p.r = p_c.rgb(0);
|
||||
p.g = p_c.rgb(1);
|
||||
p.b = p_c.rgb(2);
|
||||
msg->points.push_back(p);
|
||||
}
|
||||
void pointCloudToMsg(
|
||||
const PointCloud& pointcloud,
|
||||
const std::string& frame_id,
|
||||
Time t,
|
||||
pcl::PointCloud<pcl::PointXYZRGB>::Ptr& msg
|
||||
) {
|
||||
CHECK(msg);
|
||||
msg->header.frame_id = frame_id;
|
||||
msg->height = pointcloud.size();
|
||||
msg->width = 1;
|
||||
for (auto& p_c : pointcloud) {
|
||||
pcl::PointXYZRGB p;
|
||||
p.x = p_c.xyz(0);
|
||||
p.y = p_c.xyz(1);
|
||||
p.z = p_c.xyz(2);
|
||||
p.r = p_c.rgb(0);
|
||||
p.g = p_c.rgb(1);
|
||||
p.b = p_c.rgb(2);
|
||||
msg->points.push_back(p);
|
||||
}
|
||||
|
||||
pcl_conversions::toPCL(toRosTime(t), msg->header.stamp);
|
||||
}
|
||||
|
||||
void imageToMsg(const Image& image, Time t, sensor_msgs::ImagePtr& msg)
|
||||
{
|
||||
cv_bridge::CvImage cv_image;
|
||||
image.convertTo(cv_image.image, CV_8U, 255.0);
|
||||
cv_image.encoding = "mono8";
|
||||
cv_image.header.stamp = toRosTime(t);
|
||||
msg = cv_image.toImageMsg();
|
||||
}
|
||||
|
||||
void depthmapToMsg(const Depthmap& depthmap, Time t, sensor_msgs::ImagePtr& msg)
|
||||
{
|
||||
cv_bridge::CvImage cv_depthmap;
|
||||
depthmap.convertTo(cv_depthmap.image, CV_32FC1);
|
||||
cv_depthmap.encoding = "32FC1";
|
||||
cv_depthmap.header.stamp = toRosTime(t);
|
||||
msg = cv_depthmap.toImageMsg();
|
||||
}
|
||||
|
||||
void opticFlowToMsg(const OpticFlow& flow, Time t, esim_msgs::OpticFlowPtr& msg)
|
||||
{
|
||||
CHECK(msg);
|
||||
msg->header.stamp = toRosTime(t);
|
||||
|
||||
const int height = flow.rows;
|
||||
const int width = flow.cols;
|
||||
msg->height = height;
|
||||
msg->width = width;
|
||||
|
||||
msg->flow_x.resize(height * width);
|
||||
msg->flow_y.resize(height * width);
|
||||
for(int y=0; y<height; ++y)
|
||||
{
|
||||
for(int x=0; x<width; ++x)
|
||||
{
|
||||
msg->flow_x[x + y * width] = static_cast<float>(flow(y,x)[0]);
|
||||
msg->flow_y[x + y * width] = static_cast<float>(flow(y,x)[1]);
|
||||
pcl_conversions::toPCL(toRosTime(t), msg->header.stamp);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void eventsToMsg(const Events& events, int width, int height, dvs_msgs::EventArrayPtr& msg)
|
||||
{
|
||||
CHECK(msg);
|
||||
std::vector<dvs_msgs::Event> events_list;
|
||||
for(const Event& e : events)
|
||||
{
|
||||
dvs_msgs::Event ev;
|
||||
ev.x = e.x;
|
||||
ev.y = e.y;
|
||||
ev.ts = toRosTime(e.t);
|
||||
ev.polarity = e.pol;
|
||||
|
||||
events_list.push_back(ev);
|
||||
}
|
||||
|
||||
msg->events = events_list;
|
||||
msg->height = height;
|
||||
msg->width = width;
|
||||
msg->header.stamp = events_list.back().ts;
|
||||
}
|
||||
|
||||
sensor_msgs::Imu imuToMsg(const Vector3& acc, const Vector3& gyr, Time t)
|
||||
{
|
||||
sensor_msgs::Imu imu;
|
||||
imu.header.stamp = toRosTime(t);
|
||||
|
||||
imu.linear_acceleration.x = acc(0);
|
||||
imu.linear_acceleration.y = acc(1);
|
||||
imu.linear_acceleration.z = acc(2);
|
||||
|
||||
imu.angular_velocity.x = gyr(0);
|
||||
imu.angular_velocity.y = gyr(1);
|
||||
imu.angular_velocity.z = gyr(2);
|
||||
|
||||
return imu;
|
||||
}
|
||||
|
||||
geometry_msgs::TwistStamped twistToMsg(const AngularVelocity& w, const LinearVelocity& v, Time t)
|
||||
{
|
||||
geometry_msgs::TwistStamped twist;
|
||||
twist.header.stamp = toRosTime(t);
|
||||
|
||||
twist.twist.angular.x = w(0);
|
||||
twist.twist.angular.y = w(1);
|
||||
twist.twist.angular.z = w(2);
|
||||
|
||||
twist.twist.linear.x = v(0);
|
||||
twist.twist.linear.y = v(1);
|
||||
twist.twist.linear.z = v(2);
|
||||
|
||||
return twist;
|
||||
}
|
||||
|
||||
void cameraToMsg(const ze::Camera::Ptr& camera, Time t, sensor_msgs::CameraInfoPtr& msg)
|
||||
{
|
||||
CHECK(msg);
|
||||
msg->width = camera->width();
|
||||
msg->height = camera->height();
|
||||
msg->header.stamp = toRosTime(t);
|
||||
|
||||
CalibrationMatrix K = calibrationMatrixFromCamera(camera);
|
||||
boost::array<double, 9> K_vec;
|
||||
std::vector<double> D_vec;
|
||||
for(int i=0; i<3; ++i)
|
||||
{
|
||||
for(int j=0; j<3; ++j)
|
||||
{
|
||||
K_vec[j+i*3] = static_cast<double>(K(i,j));
|
||||
void imageToMsg(const Image& image, Time t, sensor_msgs::ImagePtr& msg) {
|
||||
cv_bridge::CvImage cv_image;
|
||||
image.convertTo(cv_image.image, CV_8U, 255.0);
|
||||
cv_image.encoding = "mono8";
|
||||
cv_image.header.stamp = toRosTime(t);
|
||||
msg = cv_image.toImageMsg();
|
||||
}
|
||||
}
|
||||
|
||||
switch(camera->type())
|
||||
{
|
||||
case ze::CameraType::PinholeRadialTangential:
|
||||
case ze::CameraType::Pinhole:
|
||||
msg->distortion_model = "plumb_bob";
|
||||
break;
|
||||
case ze::CameraType::PinholeEquidistant:
|
||||
msg->distortion_model = "equidistant";
|
||||
break;
|
||||
case ze::CameraType::PinholeFov:
|
||||
msg->distortion_model = "fov";
|
||||
break;
|
||||
default:
|
||||
LOG(WARNING) << "Unknown camera distortion model";
|
||||
msg->distortion_model = "";
|
||||
break;
|
||||
}
|
||||
void depthmapToMsg(
|
||||
const Depthmap& depthmap, Time t, sensor_msgs::ImagePtr& msg
|
||||
) {
|
||||
cv_bridge::CvImage cv_depthmap;
|
||||
depthmap.convertTo(cv_depthmap.image, CV_32FC1);
|
||||
cv_depthmap.encoding = "32FC1";
|
||||
cv_depthmap.header.stamp = toRosTime(t);
|
||||
msg = cv_depthmap.toImageMsg();
|
||||
}
|
||||
|
||||
for(int j=0; j<camera->distortionParameters().rows(); ++j)
|
||||
{
|
||||
D_vec.push_back(static_cast<double>(camera->distortionParameters()(j))); // @TODO: use the distortion params from the camera
|
||||
}
|
||||
void opticFlowToMsg(
|
||||
const OpticFlow& flow, Time t, esim_msgs::OpticFlowPtr& msg
|
||||
) {
|
||||
CHECK(msg);
|
||||
msg->header.stamp = toRosTime(t);
|
||||
|
||||
msg->K = K_vec;
|
||||
msg->D = D_vec;
|
||||
msg->P = {K(0,0), 0, K(0,2), 0,
|
||||
0, K(1,1), K(1,2), 0,
|
||||
0, 0, 1, 0};
|
||||
msg->R = {1, 0, 0,
|
||||
0, 1, 0,
|
||||
0, 0, 1};
|
||||
}
|
||||
const int height = flow.rows;
|
||||
const int width = flow.cols;
|
||||
msg->height = height;
|
||||
msg->width = width;
|
||||
|
||||
msg->flow_x.resize(height * width);
|
||||
msg->flow_y.resize(height * width);
|
||||
for (int y = 0; y < height; ++y) {
|
||||
for (int x = 0; x < width; ++x) {
|
||||
msg->flow_x[x + y * width] = static_cast<float>(flow(y, x)[0]);
|
||||
msg->flow_y[x + y * width] = static_cast<float>(flow(y, x)[1]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void eventsToMsg(
|
||||
const Events& events,
|
||||
int width,
|
||||
int height,
|
||||
dvs_msgs::EventArrayPtr& msg
|
||||
) {
|
||||
CHECK(msg);
|
||||
std::vector<dvs_msgs::Event> events_list;
|
||||
for (const Event& e : events) {
|
||||
dvs_msgs::Event ev;
|
||||
ev.x = e.x;
|
||||
ev.y = e.y;
|
||||
ev.ts = toRosTime(e.t);
|
||||
ev.polarity = e.pol;
|
||||
|
||||
events_list.push_back(ev);
|
||||
}
|
||||
|
||||
msg->events = events_list;
|
||||
msg->height = height;
|
||||
msg->width = width;
|
||||
msg->header.stamp = events_list.back().ts;
|
||||
}
|
||||
|
||||
sensor_msgs::Imu imuToMsg(const Vector3& acc, const Vector3& gyr, Time t) {
|
||||
sensor_msgs::Imu imu;
|
||||
imu.header.stamp = toRosTime(t);
|
||||
|
||||
imu.linear_acceleration.x = acc(0);
|
||||
imu.linear_acceleration.y = acc(1);
|
||||
imu.linear_acceleration.z = acc(2);
|
||||
|
||||
imu.angular_velocity.x = gyr(0);
|
||||
imu.angular_velocity.y = gyr(1);
|
||||
imu.angular_velocity.z = gyr(2);
|
||||
|
||||
return imu;
|
||||
}
|
||||
|
||||
geometry_msgs::TwistStamped
|
||||
twistToMsg(const AngularVelocity& w, const LinearVelocity& v, Time t) {
|
||||
geometry_msgs::TwistStamped twist;
|
||||
twist.header.stamp = toRosTime(t);
|
||||
|
||||
twist.twist.angular.x = w(0);
|
||||
twist.twist.angular.y = w(1);
|
||||
twist.twist.angular.z = w(2);
|
||||
|
||||
twist.twist.linear.x = v(0);
|
||||
twist.twist.linear.y = v(1);
|
||||
twist.twist.linear.z = v(2);
|
||||
|
||||
return twist;
|
||||
}
|
||||
|
||||
void cameraToMsg(
|
||||
const ze::Camera::Ptr& camera, Time t, sensor_msgs::CameraInfoPtr& msg
|
||||
) {
|
||||
CHECK(msg);
|
||||
msg->width = camera->width();
|
||||
msg->height = camera->height();
|
||||
msg->header.stamp = toRosTime(t);
|
||||
|
||||
CalibrationMatrix K = calibrationMatrixFromCamera(camera);
|
||||
boost::array<double, 9> K_vec;
|
||||
std::vector<double> D_vec;
|
||||
for (int i = 0; i < 3; ++i)
|
||||
for (int j = 0; j < 3; ++j)
|
||||
K_vec[j + i * 3] = static_cast<double>(K(i, j));
|
||||
|
||||
switch (camera->type()) {
|
||||
case ze::CameraType::PinholeRadialTangential:
|
||||
case ze::CameraType::Pinhole:
|
||||
msg->distortion_model = "plumb_bob";
|
||||
break;
|
||||
case ze::CameraType::PinholeEquidistant:
|
||||
msg->distortion_model = "equidistant";
|
||||
break;
|
||||
case ze::CameraType::PinholeFov:
|
||||
msg->distortion_model = "fov";
|
||||
break;
|
||||
default:
|
||||
LOG(WARNING) << "Unknown camera distortion model";
|
||||
msg->distortion_model = "";
|
||||
break;
|
||||
}
|
||||
|
||||
for (int j = 0; j < camera->distortionParameters().rows(); ++j) {
|
||||
D_vec.push_back(static_cast<double>(camera->distortionParameters()(j
|
||||
))); // @TODO: use the distortion params from the camera
|
||||
}
|
||||
|
||||
msg->K = K_vec;
|
||||
msg->D = D_vec;
|
||||
msg->P = {K(0, 0), 0, K(0, 2), 0, 0, K(1, 1), K(1, 2), 0, 0, 0, 1, 0};
|
||||
msg->R = {1, 0, 0, 0, 1, 0, 0, 0, 1};
|
||||
}
|
||||
|
||||
} // namespace event_camera_simulator
|
||||
|
@ -1,13 +1,12 @@
|
||||
#include <esim/visualization/rosbag_writer.hpp>
|
||||
#include <esim/common/utils.hpp>
|
||||
#include <ze/common/time_conversions.hpp>
|
||||
#include <esim/visualization/ros_utils.hpp>
|
||||
#include <esim/visualization/rosbag_writer.hpp>
|
||||
#include <gflags/gflags.h>
|
||||
#include <glog/logging.h>
|
||||
#include <minkindr_conversions/kindr_msg.h>
|
||||
#include <minkindr_conversions/kindr_tf.h>
|
||||
#include <tf/tfMessage.h>
|
||||
|
||||
#include <gflags/gflags.h>
|
||||
#include <glog/logging.h>
|
||||
#include <ze/common/time_conversions.hpp>
|
||||
|
||||
DECLARE_double(ros_publisher_camera_info_rate);
|
||||
DECLARE_double(ros_publisher_frame_rate);
|
||||
@ -15,294 +14,321 @@ DECLARE_double(ros_publisher_depth_rate);
|
||||
DECLARE_double(ros_publisher_pointcloud_rate);
|
||||
DECLARE_double(ros_publisher_optic_flow_rate);
|
||||
|
||||
DEFINE_string(path_to_output_bag, "",
|
||||
"Path to which save the output bag file.");
|
||||
DEFINE_string(
|
||||
path_to_output_bag, "", "Path to which save the output bag file."
|
||||
);
|
||||
|
||||
namespace event_camera_simulator {
|
||||
|
||||
RosbagWriter::RosbagWriter(const std::string& path_to_output_bag, size_t num_cameras)
|
||||
{
|
||||
CHECK_GE(num_cameras, 1);
|
||||
num_cameras_ = num_cameras;
|
||||
sensor_sizes_ = std::vector<cv::Size>(num_cameras_);
|
||||
RosbagWriter::RosbagWriter(
|
||||
const std::string& path_to_output_bag, size_t num_cameras
|
||||
) {
|
||||
CHECK_GE(num_cameras, 1);
|
||||
num_cameras_ = num_cameras;
|
||||
sensor_sizes_ = std::vector<cv::Size>(num_cameras_);
|
||||
|
||||
try
|
||||
{
|
||||
bag_.open(path_to_output_bag, rosbag::bagmode::Write);
|
||||
}
|
||||
catch(rosbag::BagIOException e)
|
||||
{
|
||||
LOG(FATAL) << "Error: could not open rosbag: " << FLAGS_path_to_output_bag << std::endl;
|
||||
return;
|
||||
}
|
||||
try {
|
||||
bag_.open(path_to_output_bag, rosbag::bagmode::Write);
|
||||
} catch (rosbag::BagIOException e) {
|
||||
LOG(FATAL) << "Error: could not open rosbag: "
|
||||
<< FLAGS_path_to_output_bag << std::endl;
|
||||
return;
|
||||
}
|
||||
|
||||
LOG(INFO) << "Will write to bag: " << path_to_output_bag;
|
||||
LOG(INFO) << "Will write to bag: " << path_to_output_bag;
|
||||
|
||||
last_published_camera_info_time_ = 0;
|
||||
last_published_image_time_ = 0;
|
||||
last_published_corrupted_image_time_ = 0;
|
||||
last_published_depthmap_time_ = 0;
|
||||
last_published_optic_flow_time_ = 0;
|
||||
last_published_pointcloud_time_ = 0;
|
||||
}
|
||||
|
||||
Publisher::Ptr RosbagWriter::createBagWriterFromGflags(size_t num_cameras)
|
||||
{
|
||||
if(FLAGS_path_to_output_bag == "")
|
||||
{
|
||||
LOG(INFO) << "Empty output bag string: will not write to rosbag";
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
return std::make_shared<RosbagWriter>(FLAGS_path_to_output_bag, num_cameras);
|
||||
}
|
||||
|
||||
RosbagWriter::~RosbagWriter()
|
||||
{
|
||||
LOG(INFO) << "Finalizing the bag...";
|
||||
bag_.close();
|
||||
LOG(INFO) << "Finished writing to bag: " << FLAGS_path_to_output_bag;
|
||||
}
|
||||
|
||||
void RosbagWriter::pointcloudCallback(const PointCloudVector& pointclouds, Time t)
|
||||
{
|
||||
CHECK_EQ(pointclouds.size(), num_cameras_);
|
||||
|
||||
for(size_t i=0; i<num_cameras_; ++i)
|
||||
{
|
||||
Duration min_time_interval_between_published_pointclouds_
|
||||
= ze::secToNanosec(1.0 / FLAGS_ros_publisher_pointcloud_rate);
|
||||
if(last_published_pointcloud_time_ > 0 && t - last_published_pointcloud_time_ < min_time_interval_between_published_pointclouds_)
|
||||
{
|
||||
return;
|
||||
last_published_camera_info_time_ = 0;
|
||||
last_published_image_time_ = 0;
|
||||
last_published_corrupted_image_time_ = 0;
|
||||
last_published_depthmap_time_ = 0;
|
||||
last_published_optic_flow_time_ = 0;
|
||||
last_published_pointcloud_time_ = 0;
|
||||
}
|
||||
|
||||
pcl::PointCloud<pcl::PointXYZRGB>::Ptr msg (new pcl::PointCloud<pcl::PointXYZRGB>);
|
||||
std::stringstream ss; ss << "cam" << i;
|
||||
pointCloudToMsg(pointclouds[i], ss.str(), t, msg);
|
||||
bag_.write(getTopicName(topic_name_prefix_, i, "pointcloud"),
|
||||
toRosTime(t), msg);
|
||||
}
|
||||
last_published_pointcloud_time_ = t;
|
||||
}
|
||||
Publisher::Ptr RosbagWriter::createBagWriterFromGflags(size_t num_cameras) {
|
||||
if (FLAGS_path_to_output_bag == "") {
|
||||
LOG(INFO) << "Empty output bag string: will not write to rosbag";
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
void RosbagWriter::imageCallback(const ImagePtrVector& images, Time t)
|
||||
{
|
||||
for(size_t i=0; i<num_cameras_; ++i)
|
||||
{
|
||||
sensor_sizes_[i] = images[i]->size();
|
||||
|
||||
static const Duration min_time_interval_between_published_images_
|
||||
= ze::secToNanosec(1.0 / FLAGS_ros_publisher_frame_rate);
|
||||
if(last_published_image_time_ > 0 && t - last_published_image_time_ < min_time_interval_between_published_images_)
|
||||
{
|
||||
return;
|
||||
return std::make_shared<RosbagWriter>(
|
||||
FLAGS_path_to_output_bag,
|
||||
num_cameras
|
||||
);
|
||||
}
|
||||
|
||||
if(images[i])
|
||||
{
|
||||
sensor_msgs::ImagePtr msg;
|
||||
imageToMsg(*images[i], t, msg);
|
||||
bag_.write(getTopicName(topic_name_prefix_, i, "image_raw"),
|
||||
msg->header.stamp, msg);
|
||||
}
|
||||
}
|
||||
last_published_image_time_ = t;
|
||||
}
|
||||
|
||||
void RosbagWriter::imageCorruptedCallback(const ImagePtrVector& images_corrupted, Time t)
|
||||
{
|
||||
for(size_t i=0; i<num_cameras_; ++i)
|
||||
{
|
||||
static const Duration min_time_interval_between_published_images_
|
||||
= ze::secToNanosec(1.0 / FLAGS_ros_publisher_frame_rate);
|
||||
if(last_published_corrupted_image_time_ > 0 && t - last_published_corrupted_image_time_ < min_time_interval_between_published_images_)
|
||||
{
|
||||
return;
|
||||
RosbagWriter::~RosbagWriter() {
|
||||
LOG(INFO) << "Finalizing the bag...";
|
||||
bag_.close();
|
||||
LOG(INFO) << "Finished writing to bag: " << FLAGS_path_to_output_bag;
|
||||
}
|
||||
|
||||
if(images_corrupted[i])
|
||||
{
|
||||
sensor_msgs::ImagePtr msg;
|
||||
imageToMsg(*images_corrupted[i], t, msg);
|
||||
bag_.write(getTopicName(topic_name_prefix_, i, "image_corrupted"),
|
||||
msg->header.stamp, msg);
|
||||
}
|
||||
}
|
||||
last_published_corrupted_image_time_ = t;
|
||||
}
|
||||
void RosbagWriter::pointcloudCallback(
|
||||
const PointCloudVector& pointclouds, Time t
|
||||
) {
|
||||
CHECK_EQ(pointclouds.size(), num_cameras_);
|
||||
|
||||
for (size_t i = 0; i < num_cameras_; ++i) {
|
||||
Duration min_time_interval_between_published_pointclouds_ =
|
||||
ze::secToNanosec(1.0 / FLAGS_ros_publisher_pointcloud_rate);
|
||||
if (last_published_pointcloud_time_ > 0
|
||||
&& t - last_published_pointcloud_time_
|
||||
< min_time_interval_between_published_pointclouds_) {
|
||||
return;
|
||||
}
|
||||
|
||||
void RosbagWriter::depthmapCallback(const DepthmapPtrVector& depthmaps, Time t)
|
||||
{
|
||||
if(depthmaps.size() != num_cameras_)
|
||||
{
|
||||
return;
|
||||
}
|
||||
|
||||
for(size_t i=0; i<num_cameras_; ++i)
|
||||
{
|
||||
static const Duration min_time_interval_between_published_depthmaps_
|
||||
= ze::secToNanosec(1.0 / FLAGS_ros_publisher_depth_rate);
|
||||
if(last_published_depthmap_time_ > 0 && t - last_published_depthmap_time_ < min_time_interval_between_published_depthmaps_)
|
||||
{
|
||||
return;
|
||||
pcl::PointCloud<pcl::PointXYZRGB>::Ptr
|
||||
msg(new pcl::PointCloud<pcl::PointXYZRGB>);
|
||||
std::stringstream ss;
|
||||
ss << "cam" << i;
|
||||
pointCloudToMsg(pointclouds[i], ss.str(), t, msg);
|
||||
bag_.write(
|
||||
getTopicName(topic_name_prefix_, i, "pointcloud"),
|
||||
toRosTime(t),
|
||||
msg
|
||||
);
|
||||
}
|
||||
last_published_pointcloud_time_ = t;
|
||||
}
|
||||
|
||||
if(depthmaps[i])
|
||||
{
|
||||
sensor_msgs::ImagePtr msg;
|
||||
depthmapToMsg(*depthmaps[i], t, msg);
|
||||
bag_.write(getTopicName(topic_name_prefix_, i, "depthmap"),
|
||||
msg->header.stamp, msg);
|
||||
}
|
||||
}
|
||||
last_published_depthmap_time_ = t;
|
||||
}
|
||||
void RosbagWriter::imageCallback(const ImagePtrVector& images, Time t) {
|
||||
for (size_t i = 0; i < num_cameras_; ++i) {
|
||||
sensor_sizes_[i] = images[i]->size();
|
||||
|
||||
static const Duration min_time_interval_between_published_images_ =
|
||||
ze::secToNanosec(1.0 / FLAGS_ros_publisher_frame_rate);
|
||||
if (last_published_image_time_ > 0
|
||||
&& t - last_published_image_time_
|
||||
< min_time_interval_between_published_images_) {
|
||||
return;
|
||||
}
|
||||
|
||||
void RosbagWriter::opticFlowCallback(const OpticFlowPtrVector& optic_flows, Time t)
|
||||
{
|
||||
if(optic_flows.size() != num_cameras_)
|
||||
{
|
||||
return;
|
||||
}
|
||||
|
||||
for(size_t i=0; i<num_cameras_; ++i)
|
||||
{
|
||||
static const Duration min_time_interval_between_published_optic_flows_
|
||||
= ze::secToNanosec(1.0 / FLAGS_ros_publisher_optic_flow_rate);
|
||||
if(last_published_optic_flow_time_ > 0 && t - last_published_optic_flow_time_ < min_time_interval_between_published_optic_flows_)
|
||||
{
|
||||
return;
|
||||
if (images[i]) {
|
||||
sensor_msgs::ImagePtr msg;
|
||||
imageToMsg(*images[i], t, msg);
|
||||
bag_.write(
|
||||
getTopicName(topic_name_prefix_, i, "image_raw"),
|
||||
msg->header.stamp,
|
||||
msg
|
||||
);
|
||||
}
|
||||
}
|
||||
last_published_image_time_ = t;
|
||||
}
|
||||
|
||||
if(optic_flows[i])
|
||||
{
|
||||
esim_msgs::OpticFlow::Ptr msg;
|
||||
msg.reset(new esim_msgs::OpticFlow);
|
||||
opticFlowToMsg(*optic_flows[i], t, msg);
|
||||
bag_.write(getTopicName(topic_name_prefix_, i, "optic_flow"),
|
||||
msg->header.stamp, msg);
|
||||
}
|
||||
}
|
||||
void RosbagWriter::imageCorruptedCallback(
|
||||
const ImagePtrVector& images_corrupted, Time t
|
||||
) {
|
||||
for (size_t i = 0; i < num_cameras_; ++i) {
|
||||
static const Duration min_time_interval_between_published_images_ =
|
||||
ze::secToNanosec(1.0 / FLAGS_ros_publisher_frame_rate);
|
||||
if (last_published_corrupted_image_time_ > 0
|
||||
&& t - last_published_corrupted_image_time_
|
||||
< min_time_interval_between_published_images_) {
|
||||
return;
|
||||
}
|
||||
|
||||
last_published_optic_flow_time_ = t;
|
||||
}
|
||||
|
||||
void RosbagWriter::eventsCallback(const EventsVector& events)
|
||||
{
|
||||
for(size_t i=0; i<num_cameras_; ++i)
|
||||
{
|
||||
if(sensor_sizes_[i].width == 0 || sensor_sizes_[i].height == 0)
|
||||
{
|
||||
continue;
|
||||
if (images_corrupted[i]) {
|
||||
sensor_msgs::ImagePtr msg;
|
||||
imageToMsg(*images_corrupted[i], t, msg);
|
||||
bag_.write(
|
||||
getTopicName(topic_name_prefix_, i, "image_corrupted"),
|
||||
msg->header.stamp,
|
||||
msg
|
||||
);
|
||||
}
|
||||
}
|
||||
last_published_corrupted_image_time_ = t;
|
||||
}
|
||||
|
||||
if(events[i].empty())
|
||||
{
|
||||
continue;
|
||||
void
|
||||
RosbagWriter::depthmapCallback(const DepthmapPtrVector& depthmaps, Time t) {
|
||||
if (depthmaps.size() != num_cameras_)
|
||||
return;
|
||||
|
||||
for (size_t i = 0; i < num_cameras_; ++i) {
|
||||
static const Duration
|
||||
min_time_interval_between_published_depthmaps_ =
|
||||
ze::secToNanosec(1.0 / FLAGS_ros_publisher_depth_rate);
|
||||
if (last_published_depthmap_time_ > 0
|
||||
&& t - last_published_depthmap_time_
|
||||
< min_time_interval_between_published_depthmaps_) {
|
||||
return;
|
||||
}
|
||||
|
||||
if (depthmaps[i]) {
|
||||
sensor_msgs::ImagePtr msg;
|
||||
depthmapToMsg(*depthmaps[i], t, msg);
|
||||
bag_.write(
|
||||
getTopicName(topic_name_prefix_, i, "depthmap"),
|
||||
msg->header.stamp,
|
||||
msg
|
||||
);
|
||||
}
|
||||
}
|
||||
last_published_depthmap_time_ = t;
|
||||
}
|
||||
|
||||
dvs_msgs::EventArrayPtr msg;
|
||||
msg.reset(new dvs_msgs::EventArray);
|
||||
eventsToMsg(events[i], sensor_sizes_[i].width, sensor_sizes_[i].height, msg);
|
||||
void RosbagWriter::opticFlowCallback(
|
||||
const OpticFlowPtrVector& optic_flows, Time t
|
||||
) {
|
||||
if (optic_flows.size() != num_cameras_)
|
||||
return;
|
||||
|
||||
bag_.write(getTopicName(topic_name_prefix_, i, "events"),
|
||||
msg->header.stamp, msg);
|
||||
}
|
||||
}
|
||||
for (size_t i = 0; i < num_cameras_; ++i) {
|
||||
static const Duration
|
||||
min_time_interval_between_published_optic_flows_ =
|
||||
ze::secToNanosec(1.0 / FLAGS_ros_publisher_optic_flow_rate);
|
||||
if (last_published_optic_flow_time_ > 0
|
||||
&& t - last_published_optic_flow_time_
|
||||
< min_time_interval_between_published_optic_flows_) {
|
||||
return;
|
||||
}
|
||||
|
||||
void RosbagWriter::poseCallback(const Transformation& T_W_B,
|
||||
const TransformationVector& T_W_Cs,
|
||||
Time t)
|
||||
{
|
||||
if(T_W_Cs.size() != num_cameras_)
|
||||
{
|
||||
LOG(WARNING) << "Number of poses is different than number of cameras."
|
||||
<< "Will not output poses.";
|
||||
return;
|
||||
}
|
||||
geometry_msgs::PoseStamped pose_stamped_msg;
|
||||
geometry_msgs::TransformStamped transform_stamped_msg;
|
||||
transform_stamped_msg.header.frame_id = "map";
|
||||
transform_stamped_msg.header.stamp = toRosTime(t);
|
||||
tf::tfMessage tf_msg;
|
||||
if (optic_flows[i]) {
|
||||
esim_msgs::OpticFlow::Ptr msg;
|
||||
msg.reset(new esim_msgs::OpticFlow);
|
||||
opticFlowToMsg(*optic_flows[i], t, msg);
|
||||
bag_.write(
|
||||
getTopicName(topic_name_prefix_, i, "optic_flow"),
|
||||
msg->header.stamp,
|
||||
msg
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
for(size_t i=0; i<num_cameras_; ++i)
|
||||
{
|
||||
// Write pose to bag
|
||||
tf::poseStampedKindrToMsg(T_W_Cs[i], toRosTime(t), "map", &pose_stamped_msg);
|
||||
bag_.write(getTopicName(topic_name_prefix_, i, "pose"),
|
||||
toRosTime(t), pose_stamped_msg);
|
||||
last_published_optic_flow_time_ = t;
|
||||
}
|
||||
|
||||
// Write tf transform to bag
|
||||
std::stringstream ss; ss << "cam" << i;
|
||||
transform_stamped_msg.child_frame_id = ss.str();
|
||||
tf::transformKindrToMsg(T_W_Cs[i], &transform_stamped_msg.transform);
|
||||
tf_msg.transforms.push_back(transform_stamped_msg);
|
||||
}
|
||||
void RosbagWriter::eventsCallback(const EventsVector& events) {
|
||||
for (size_t i = 0; i < num_cameras_; ++i) {
|
||||
if (sensor_sizes_[i].width == 0 || sensor_sizes_[i].height == 0)
|
||||
continue;
|
||||
|
||||
transform_stamped_msg.child_frame_id = "body";
|
||||
tf::transformKindrToMsg(T_W_B, &transform_stamped_msg.transform);
|
||||
tf_msg.transforms.push_back(transform_stamped_msg);
|
||||
if (events[i].empty())
|
||||
continue;
|
||||
|
||||
bag_.write("/tf", toRosTime(t), tf_msg);
|
||||
}
|
||||
dvs_msgs::EventArrayPtr msg;
|
||||
msg.reset(new dvs_msgs::EventArray);
|
||||
eventsToMsg(
|
||||
events[i],
|
||||
sensor_sizes_[i].width,
|
||||
sensor_sizes_[i].height,
|
||||
msg
|
||||
);
|
||||
|
||||
void RosbagWriter::twistCallback(const AngularVelocityVector &ws, const LinearVelocityVector &vs, Time t)
|
||||
{
|
||||
if(ws.size() != num_cameras_
|
||||
|| vs.size() != num_cameras_)
|
||||
{
|
||||
LOG(WARNING) << "Number of twists is different than number of cameras."
|
||||
<< "Will not output twists.";
|
||||
return;
|
||||
}
|
||||
CHECK_EQ(ws.size(), num_cameras_);
|
||||
CHECK_EQ(vs.size(), num_cameras_);
|
||||
bag_.write(
|
||||
getTopicName(topic_name_prefix_, i, "events"),
|
||||
msg->header.stamp,
|
||||
msg
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
for(size_t i=0; i<num_cameras_; ++i)
|
||||
{
|
||||
const geometry_msgs::TwistStamped msg = twistToMsg(ws[i], vs[i], t);
|
||||
bag_.write(getTopicName(topic_name_prefix_, i, "twist"),
|
||||
msg.header.stamp, msg);
|
||||
}
|
||||
}
|
||||
void RosbagWriter::poseCallback(
|
||||
const Transformation& T_W_B, const TransformationVector& T_W_Cs, Time t
|
||||
) {
|
||||
if (T_W_Cs.size() != num_cameras_) {
|
||||
LOG(WARNING
|
||||
) << "Number of poses is different than number of cameras."
|
||||
<< "Will not output poses.";
|
||||
return;
|
||||
}
|
||||
geometry_msgs::PoseStamped pose_stamped_msg;
|
||||
geometry_msgs::TransformStamped transform_stamped_msg;
|
||||
transform_stamped_msg.header.frame_id = "map";
|
||||
transform_stamped_msg.header.stamp = toRosTime(t);
|
||||
tf::tfMessage tf_msg;
|
||||
|
||||
void RosbagWriter::imuCallback(const Vector3& acc, const Vector3& gyr, Time t)
|
||||
{
|
||||
VLOG_EVERY_N(1, 500) << "t = " << ze::nanosecToSecTrunc(t) << " s";
|
||||
for (size_t i = 0; i < num_cameras_; ++i) {
|
||||
// Write pose to bag
|
||||
tf::poseStampedKindrToMsg(
|
||||
T_W_Cs[i],
|
||||
toRosTime(t),
|
||||
"map",
|
||||
&pose_stamped_msg
|
||||
);
|
||||
bag_.write(
|
||||
getTopicName(topic_name_prefix_, i, "pose"),
|
||||
toRosTime(t),
|
||||
pose_stamped_msg
|
||||
);
|
||||
|
||||
const sensor_msgs::Imu msg = imuToMsg(acc, gyr, t);
|
||||
const std::string imu_topic = "/imu";
|
||||
bag_.write(imu_topic,
|
||||
msg.header.stamp, msg);
|
||||
}
|
||||
// Write tf transform to bag
|
||||
std::stringstream ss;
|
||||
ss << "cam" << i;
|
||||
transform_stamped_msg.child_frame_id = ss.str();
|
||||
tf::transformKindrToMsg(
|
||||
T_W_Cs[i],
|
||||
&transform_stamped_msg.transform
|
||||
);
|
||||
tf_msg.transforms.push_back(transform_stamped_msg);
|
||||
}
|
||||
|
||||
void RosbagWriter::cameraInfoCallback(const ze::CameraRig::Ptr& camera_rig, Time t)
|
||||
{
|
||||
CHECK(camera_rig);
|
||||
CHECK_EQ(camera_rig->size(), num_cameras_);
|
||||
transform_stamped_msg.child_frame_id = "body";
|
||||
tf::transformKindrToMsg(T_W_B, &transform_stamped_msg.transform);
|
||||
tf_msg.transforms.push_back(transform_stamped_msg);
|
||||
|
||||
static const Duration min_time_interval_between_published_camera_info_
|
||||
= ze::secToNanosec(1.0 / FLAGS_ros_publisher_camera_info_rate);
|
||||
if(last_published_camera_info_time_ > 0 && t - last_published_camera_info_time_ < min_time_interval_between_published_camera_info_)
|
||||
{
|
||||
return;
|
||||
}
|
||||
bag_.write("/tf", toRosTime(t), tf_msg);
|
||||
}
|
||||
|
||||
for(size_t i=0; i<num_cameras_; ++i)
|
||||
{
|
||||
sensor_msgs::CameraInfoPtr msg;
|
||||
msg.reset(new sensor_msgs::CameraInfo);
|
||||
cameraToMsg(camera_rig->atShared(i), t, msg);
|
||||
bag_.write(getTopicName(topic_name_prefix_, i, "camera_info"),
|
||||
msg->header.stamp, msg);
|
||||
}
|
||||
void RosbagWriter::twistCallback(
|
||||
const AngularVelocityVector& ws, const LinearVelocityVector& vs, Time t
|
||||
) {
|
||||
if (ws.size() != num_cameras_ || vs.size() != num_cameras_) {
|
||||
LOG(WARNING
|
||||
) << "Number of twists is different than number of cameras."
|
||||
<< "Will not output twists.";
|
||||
return;
|
||||
}
|
||||
CHECK_EQ(ws.size(), num_cameras_);
|
||||
CHECK_EQ(vs.size(), num_cameras_);
|
||||
|
||||
last_published_camera_info_time_ = t;
|
||||
for (size_t i = 0; i < num_cameras_; ++i) {
|
||||
const geometry_msgs::TwistStamped msg = twistToMsg(ws[i], vs[i], t);
|
||||
bag_.write(
|
||||
getTopicName(topic_name_prefix_, i, "twist"),
|
||||
msg.header.stamp,
|
||||
msg
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
void
|
||||
RosbagWriter::imuCallback(const Vector3& acc, const Vector3& gyr, Time t) {
|
||||
VLOG_EVERY_N(1, 500) << "t = " << ze::nanosecToSecTrunc(t) << " s";
|
||||
|
||||
const sensor_msgs::Imu msg = imuToMsg(acc, gyr, t);
|
||||
const std::string imu_topic = "/imu";
|
||||
bag_.write(imu_topic, msg.header.stamp, msg);
|
||||
}
|
||||
|
||||
void RosbagWriter::cameraInfoCallback(
|
||||
const ze::CameraRig::Ptr& camera_rig, Time t
|
||||
) {
|
||||
CHECK(camera_rig);
|
||||
CHECK_EQ(camera_rig->size(), num_cameras_);
|
||||
|
||||
static const Duration min_time_interval_between_published_camera_info_ =
|
||||
ze::secToNanosec(1.0 / FLAGS_ros_publisher_camera_info_rate);
|
||||
if (last_published_camera_info_time_ > 0
|
||||
&& t - last_published_camera_info_time_
|
||||
< min_time_interval_between_published_camera_info_) {
|
||||
return;
|
||||
}
|
||||
|
||||
for (size_t i = 0; i < num_cameras_; ++i) {
|
||||
sensor_msgs::CameraInfoPtr msg;
|
||||
msg.reset(new sensor_msgs::CameraInfo);
|
||||
cameraToMsg(camera_rig->atShared(i), t, msg);
|
||||
bag_.write(
|
||||
getTopicName(topic_name_prefix_, i, "camera_info"),
|
||||
msg->header.stamp,
|
||||
msg
|
||||
);
|
||||
}
|
||||
|
||||
last_published_camera_info_time_ = t;
|
||||
}
|
||||
|
||||
} // namespace event_camera_simulator
|
||||
|
@ -1,107 +1,127 @@
|
||||
#include <esim/visualization/synthetic_optic_flow_publisher.hpp>
|
||||
#include <esim/common/utils.hpp>
|
||||
#include <ze/common/path_utils.hpp>
|
||||
#include <ze/common/file_utils.hpp>
|
||||
#include <ze/common/time_conversions.hpp>
|
||||
|
||||
#include <opencv2/highgui/highgui.hpp>
|
||||
|
||||
#include <esim/visualization/synthetic_optic_flow_publisher.hpp>
|
||||
#include <gflags/gflags.h>
|
||||
#include <glog/logging.h>
|
||||
#include <opencv2/highgui/highgui.hpp>
|
||||
#include <ze/common/file_utils.hpp>
|
||||
#include <ze/common/path_utils.hpp>
|
||||
#include <ze/common/time_conversions.hpp>
|
||||
|
||||
DEFINE_string(synthetic_optic_flow_output_folder, "",
|
||||
"Folder in which to output the events.");
|
||||
DEFINE_string(
|
||||
synthetic_optic_flow_output_folder,
|
||||
"",
|
||||
"Folder in which to output the events."
|
||||
);
|
||||
|
||||
namespace event_camera_simulator {
|
||||
|
||||
/**
|
||||
* This publisher was designed with the purpose of generating simulation data
|
||||
* with ground truth labels, for the task of optic flow estimation.
|
||||
*
|
||||
* It assumes that it will receive a relatively small sequence of events (corresponding, for example,
|
||||
* to all the events in between two frames), and will write all the events to disk in its destructor,
|
||||
* in three forms:
|
||||
* - an "events.txt" file that contains all the events in "t x y pol" format (one event per line)
|
||||
* - an "event_count.png" image that whose first two channels contain the counts of the positive (resp. negative) event counts at each pixel
|
||||
* - two "timestamps images" in which each pixel contains the timestamp at the last event that fell on the pixel.
|
||||
* (since the timestamp is a floating point value, it is split in 3 8-bit values so that the timestamp images
|
||||
* can be saved in a single 3-channel image).
|
||||
*/
|
||||
SyntheticOpticFlowPublisher::SyntheticOpticFlowPublisher(const std::string& output_folder)
|
||||
: output_folder_(output_folder)
|
||||
{
|
||||
ze::openOutputFileStream(ze::joinPath(output_folder, "events.txt"),
|
||||
&events_file_);
|
||||
}
|
||||
/**
|
||||
* This publisher was designed with the purpose of generating simulation
|
||||
* data with ground truth labels, for the task of optic flow estimation.
|
||||
*
|
||||
* It assumes that it will receive a relatively small sequence of events
|
||||
* (corresponding, for example, to all the events in between two frames),
|
||||
* and will write all the events to disk in its destructor, in three forms:
|
||||
* - an "events.txt" file that contains all the events in "t x y pol"
|
||||
* format (one event per line)
|
||||
* - an "event_count.png" image that whose first two channels contain the
|
||||
* counts of the positive (resp. negative) event counts at each pixel
|
||||
* - two "timestamps images" in which each pixel contains the timestamp at
|
||||
* the last event that fell on the pixel. (since the timestamp is a floating
|
||||
* point value, it is split in 3 8-bit values so that the timestamp images
|
||||
* can be saved in a single 3-channel image).
|
||||
*/
|
||||
SyntheticOpticFlowPublisher::SyntheticOpticFlowPublisher(
|
||||
const std::string& output_folder
|
||||
)
|
||||
: output_folder_(output_folder) {
|
||||
ze::openOutputFileStream(
|
||||
ze::joinPath(output_folder, "events.txt"),
|
||||
&events_file_
|
||||
);
|
||||
}
|
||||
|
||||
Publisher::Ptr SyntheticOpticFlowPublisher::createFromGflags()
|
||||
{
|
||||
if(FLAGS_synthetic_optic_flow_output_folder == "")
|
||||
{
|
||||
LOG(WARNING) << "Empty output folder string: will not write synthetic optic flow files";
|
||||
return nullptr;
|
||||
}
|
||||
Publisher::Ptr SyntheticOpticFlowPublisher::createFromGflags() {
|
||||
if (FLAGS_synthetic_optic_flow_output_folder == "") {
|
||||
LOG(WARNING
|
||||
) << "Empty output folder string: will not write synthetic "
|
||||
"optic flow files";
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
return std::make_shared<SyntheticOpticFlowPublisher>(FLAGS_synthetic_optic_flow_output_folder);
|
||||
}
|
||||
return std::make_shared<SyntheticOpticFlowPublisher>(
|
||||
FLAGS_synthetic_optic_flow_output_folder
|
||||
);
|
||||
}
|
||||
|
||||
SyntheticOpticFlowPublisher::~SyntheticOpticFlowPublisher()
|
||||
{
|
||||
// Create an event count image using all the events collected
|
||||
cv::Mat event_count_image = cv::Mat::zeros(sensor_size_, CV_8UC3);
|
||||
SyntheticOpticFlowPublisher::~SyntheticOpticFlowPublisher() {
|
||||
// Create an event count image using all the events collected
|
||||
cv::Mat event_count_image = cv::Mat::zeros(sensor_size_, CV_8UC3);
|
||||
|
||||
// Create two event timestamps images using all the events collected
|
||||
cv::Mat timestamps_pos = cv::Mat::zeros(sensor_size_, CV_8UC3);
|
||||
cv::Mat timestamps_neg = cv::Mat::zeros(sensor_size_, CV_8UC3);
|
||||
// Create two event timestamps images using all the events collected
|
||||
cv::Mat timestamps_pos = cv::Mat::zeros(sensor_size_, CV_8UC3);
|
||||
cv::Mat timestamps_neg = cv::Mat::zeros(sensor_size_, CV_8UC3);
|
||||
|
||||
int remapped_timestamp_fraction;
|
||||
double timestamp_fraction;
|
||||
for(Event e : events_)
|
||||
{
|
||||
event_count_image.at<cv::Vec3b>(e.y,e.x)[int(e.pol)]++;
|
||||
int remapped_timestamp_fraction;
|
||||
double timestamp_fraction;
|
||||
for (Event e : events_) {
|
||||
event_count_image.at<cv::Vec3b>(e.y, e.x)[int(e.pol)]++;
|
||||
|
||||
cv::Mat& curr_timestamp_image = e.pol ? timestamps_pos : timestamps_neg;
|
||||
cv::Mat& curr_timestamp_image =
|
||||
e.pol ? timestamps_pos : timestamps_neg;
|
||||
|
||||
// remap value
|
||||
timestamp_fraction = double(e.t - events_[0].t) / (events_[events_.size()-1].t - events_[0].t);
|
||||
remapped_timestamp_fraction = timestamp_fraction * std::pow(2,24); // remap 0-1 to 0 - 2^24
|
||||
// remap value
|
||||
timestamp_fraction = double(e.t - events_[0].t)
|
||||
/ (events_[events_.size() - 1].t - events_[0].t);
|
||||
remapped_timestamp_fraction =
|
||||
timestamp_fraction * std::pow(2, 24); // remap 0-1 to 0 - 2^24
|
||||
|
||||
// distribute the 24 bit number (remapped_timestamp_fraction) to 3 channel 8 bit image
|
||||
for (int i=0; i<3; i++)
|
||||
{
|
||||
curr_timestamp_image.at<cv::Vec3b>(e.y,e.x)[i] = (int) remapped_timestamp_fraction & 0xFF; // bit mask of 0000 0000 0000 0000 1111 1111
|
||||
remapped_timestamp_fraction = remapped_timestamp_fraction >> 8; // shifts bits to right by 8
|
||||
}
|
||||
}
|
||||
// distribute the 24 bit number (remapped_timestamp_fraction) to 3
|
||||
// channel 8 bit image
|
||||
for (int i = 0; i < 3; i++) {
|
||||
curr_timestamp_image.at<cv::Vec3b>(e.y, e.x)[i] =
|
||||
(int) remapped_timestamp_fraction
|
||||
& 0xFF; // bit mask of 0000 0000 0000 0000 1111 1111
|
||||
remapped_timestamp_fraction = remapped_timestamp_fraction
|
||||
>> 8; // shifts bits to right by 8
|
||||
}
|
||||
}
|
||||
|
||||
// Write event count image + the two timestamps images to disk
|
||||
std::string path_event_count_image = ze::joinPath(output_folder_, "event_count.png");
|
||||
std::string path_timestamps_pos = ze::joinPath(output_folder_, "event_time_stamps_pos.png");
|
||||
std::string path_timestamps_neg = ze::joinPath(output_folder_, "event_time_stamps_neg.png");
|
||||
// Write event count image + the two timestamps images to disk
|
||||
std::string path_event_count_image =
|
||||
ze::joinPath(output_folder_, "event_count.png");
|
||||
std::string path_timestamps_pos =
|
||||
ze::joinPath(output_folder_, "event_time_stamps_pos.png");
|
||||
std::string path_timestamps_neg =
|
||||
ze::joinPath(output_folder_, "event_time_stamps_neg.png");
|
||||
|
||||
std::vector<int> compression_params;
|
||||
compression_params.push_back(cv::IMWRITE_PNG_COMPRESSION);
|
||||
compression_params.push_back(0);
|
||||
std::vector<int> compression_params;
|
||||
compression_params.push_back(cv::IMWRITE_PNG_COMPRESSION);
|
||||
compression_params.push_back(0);
|
||||
|
||||
cv::imwrite(path_event_count_image, event_count_image, compression_params);
|
||||
cv::imwrite(path_timestamps_pos, timestamps_pos, compression_params);
|
||||
cv::imwrite(path_timestamps_neg, timestamps_neg, compression_params);
|
||||
cv::imwrite(
|
||||
path_event_count_image,
|
||||
event_count_image,
|
||||
compression_params
|
||||
);
|
||||
cv::imwrite(path_timestamps_pos, timestamps_pos, compression_params);
|
||||
cv::imwrite(path_timestamps_neg, timestamps_neg, compression_params);
|
||||
|
||||
// Finish writing event file
|
||||
events_file_.close();
|
||||
}
|
||||
// Finish writing event file
|
||||
events_file_.close();
|
||||
}
|
||||
|
||||
void SyntheticOpticFlowPublisher::eventsCallback(const EventsVector& events)
|
||||
{
|
||||
CHECK_EQ(events.size(), 1);
|
||||
void SyntheticOpticFlowPublisher::eventsCallback(const EventsVector& events
|
||||
) {
|
||||
CHECK_EQ(events.size(), 1);
|
||||
|
||||
// Simply aggregate the events into the events_ buffer.
|
||||
// At the destruction of this object, everything will be saved to disk.
|
||||
for(const Event& e : events[0])
|
||||
{
|
||||
events_file_ << e.t << " " << e.x << " " << e.y << " " << (e.pol? 1 : 0) << std::endl;
|
||||
events_.push_back(e);
|
||||
}
|
||||
}
|
||||
// Simply aggregate the events into the events_ buffer.
|
||||
// At the destruction of this object, everything will be saved to disk.
|
||||
for (const Event& e : events[0]) {
|
||||
events_file_ << e.t << " " << e.x << " " << e.y << " "
|
||||
<< (e.pol ? 1 : 0) << std::endl;
|
||||
events_.push_back(e);
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace event_camera_simulator
|
||||
|
@ -1,35 +1,39 @@
|
||||
#pragma once
|
||||
|
||||
#include <esim/rendering/simple_renderer_base.hpp>
|
||||
#include <esim/imp_multi_objects_2d/object.hpp>
|
||||
#include <esim/rendering/simple_renderer_base.hpp>
|
||||
|
||||
namespace event_camera_simulator {
|
||||
|
||||
//! A rendering engine for planar scenes
|
||||
class MultiObject2DRenderer : public SimpleRenderer
|
||||
{
|
||||
public:
|
||||
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
|
||||
//! A rendering engine for planar scenes
|
||||
class MultiObject2DRenderer : public SimpleRenderer {
|
||||
public:
|
||||
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
|
||||
|
||||
MultiObject2DRenderer();
|
||||
MultiObject2DRenderer();
|
||||
|
||||
~MultiObject2DRenderer();
|
||||
~MultiObject2DRenderer();
|
||||
|
||||
virtual bool render(const Time t,
|
||||
const ImagePtr& out_image,
|
||||
const OpticFlowPtr& optic_flow_map) const;
|
||||
virtual bool render(
|
||||
const Time t,
|
||||
const ImagePtr& out_image,
|
||||
const OpticFlowPtr& optic_flow_map
|
||||
) const;
|
||||
|
||||
virtual int getWidth() const { return width_; }
|
||||
virtual int getWidth() const {
|
||||
return width_;
|
||||
}
|
||||
|
||||
virtual int getHeight() const { return height_; }
|
||||
virtual int getHeight() const {
|
||||
return height_;
|
||||
}
|
||||
|
||||
protected:
|
||||
protected:
|
||||
void outputGroundTruthData();
|
||||
|
||||
void outputGroundTruthData();
|
||||
|
||||
std::vector<std::shared_ptr<Object>> objects_;
|
||||
int width_, height_;
|
||||
ze::real_t tmax_;
|
||||
};
|
||||
std::vector<std::shared_ptr<Object>> objects_;
|
||||
int width_, height_;
|
||||
ze::real_t tmax_;
|
||||
};
|
||||
|
||||
} // namespace event_camera_simulator
|
||||
|
@ -4,118 +4,136 @@
|
||||
|
||||
namespace event_camera_simulator {
|
||||
|
||||
bool loadTexture(const std::string& path_to_img, cv::Mat *img,
|
||||
double median_blur, double gaussian_blur);
|
||||
bool loadTexture(
|
||||
const std::string& path_to_img,
|
||||
cv::Mat* img,
|
||||
double median_blur,
|
||||
double gaussian_blur
|
||||
);
|
||||
|
||||
using Affine = cv::Matx<FloatType, 3,3>;
|
||||
using AffineWithJacobian = std::pair<Affine, Affine>;
|
||||
using Affine = cv::Matx<FloatType, 3, 3>;
|
||||
using AffineWithJacobian = std::pair<Affine, Affine>;
|
||||
|
||||
class MotionParameters
|
||||
{
|
||||
public:
|
||||
MotionParameters(FloatType tmax,
|
||||
FloatType theta0_deg, FloatType theta1_deg,
|
||||
FloatType x0, FloatType x1,
|
||||
FloatType y0, FloatType y1,
|
||||
FloatType sx0, FloatType sx1,
|
||||
FloatType sy0, FloatType sy1)
|
||||
: tmax_(tmax),
|
||||
x0_(x0),
|
||||
x1_(x1),
|
||||
y0_(y0),
|
||||
y1_(y1),
|
||||
theta0_(theta0_deg * CV_PI / 180.),
|
||||
theta1_(theta1_deg * CV_PI / 180.),
|
||||
sx0_(sx0),
|
||||
sx1_(sx1),
|
||||
sy0_(sy0),
|
||||
sy1_(sy1)
|
||||
{
|
||||
}
|
||||
class MotionParameters {
|
||||
public:
|
||||
MotionParameters(
|
||||
FloatType tmax,
|
||||
FloatType theta0_deg,
|
||||
FloatType theta1_deg,
|
||||
FloatType x0,
|
||||
FloatType x1,
|
||||
FloatType y0,
|
||||
FloatType y1,
|
||||
FloatType sx0,
|
||||
FloatType sx1,
|
||||
FloatType sy0,
|
||||
FloatType sy1
|
||||
)
|
||||
: tmax_(tmax),
|
||||
x0_(x0),
|
||||
x1_(x1),
|
||||
y0_(y0),
|
||||
y1_(y1),
|
||||
theta0_(theta0_deg * CV_PI / 180.),
|
||||
theta1_(theta1_deg * CV_PI / 180.),
|
||||
sx0_(sx0),
|
||||
sx1_(sx1),
|
||||
sy0_(sy0),
|
||||
sy1_(sy1) {}
|
||||
|
||||
AffineWithJacobian getAffineTransformationWithJacobian(ze::real_t t)
|
||||
{
|
||||
// constants
|
||||
const ze::real_t dtheta = theta1_ - theta0_;
|
||||
const ze::real_t dx = x1_ - x0_;
|
||||
const ze::real_t dy = y1_ - y0_;
|
||||
const ze::real_t dsx = sx1_ - sx0_;
|
||||
const ze::real_t dsy = sy1_ - sy0_;
|
||||
AffineWithJacobian getAffineTransformationWithJacobian(ze::real_t t) {
|
||||
// constants
|
||||
const ze::real_t dtheta = theta1_ - theta0_;
|
||||
const ze::real_t dx = x1_ - x0_;
|
||||
const ze::real_t dy = y1_ - y0_;
|
||||
const ze::real_t dsx = sx1_ - sx0_;
|
||||
const ze::real_t dsy = sy1_ - sy0_;
|
||||
|
||||
// computation of parameter(t)
|
||||
const ze::real_t theta = theta0_ + t/tmax_ * dtheta;
|
||||
const ze::real_t x = x0_ + t/tmax_ * dx;
|
||||
const ze::real_t y = y0_ + t/tmax_ * dy;
|
||||
const ze::real_t sx = sx0_ + t/tmax_ * dsx;
|
||||
const ze::real_t sy = sy0_ + t/tmax_ * dsy;
|
||||
const ze::real_t stheta = std::sin(theta);
|
||||
const ze::real_t ctheta = std::cos(theta);
|
||||
// computation of parameter(t)
|
||||
const ze::real_t theta = theta0_ + t / tmax_ * dtheta;
|
||||
const ze::real_t x = x0_ + t / tmax_ * dx;
|
||||
const ze::real_t y = y0_ + t / tmax_ * dy;
|
||||
const ze::real_t sx = sx0_ + t / tmax_ * dsx;
|
||||
const ze::real_t sy = sy0_ + t / tmax_ * dsy;
|
||||
const ze::real_t stheta = std::sin(theta);
|
||||
const ze::real_t ctheta = std::cos(theta);
|
||||
|
||||
Affine A;
|
||||
A << sx * ctheta, -sy * stheta, x,
|
||||
sx * stheta, sy * ctheta, y,
|
||||
0, 0, 1;
|
||||
Affine A;
|
||||
A << sx * ctheta, -sy * stheta, x, sx * stheta, sy * ctheta, y, 0,
|
||||
0, 1;
|
||||
|
||||
// computation of dparameter_dt(t)
|
||||
const ze::real_t dtheta_dt = 1./tmax_ * dtheta;
|
||||
const ze::real_t dx_dt = 1./tmax_ * dx;
|
||||
const ze::real_t dy_dt = 1./tmax_ * dy;
|
||||
const ze::real_t dsx_dt = 1./tmax_ * dsx;
|
||||
const ze::real_t dsy_dt = 1./tmax_ * dsy;
|
||||
// computation of dparameter_dt(t)
|
||||
const ze::real_t dtheta_dt = 1. / tmax_ * dtheta;
|
||||
const ze::real_t dx_dt = 1. / tmax_ * dx;
|
||||
const ze::real_t dy_dt = 1. / tmax_ * dy;
|
||||
const ze::real_t dsx_dt = 1. / tmax_ * dsx;
|
||||
const ze::real_t dsy_dt = 1. / tmax_ * dsy;
|
||||
|
||||
cv::Matx<FloatType, 3, 3> dAdt;
|
||||
dAdt << dsx_dt * ctheta - dtheta_dt * stheta * sx, -dsy_dt * stheta - dtheta_dt * ctheta * sy, dx_dt,
|
||||
dsx_dt * stheta + dtheta_dt * ctheta * sx, dsy_dt * ctheta - dtheta_dt * stheta * sy, dy_dt,
|
||||
0.0, 0.0, 0.0;
|
||||
cv::Matx<FloatType, 3, 3> dAdt;
|
||||
dAdt << dsx_dt * ctheta - dtheta_dt * stheta * sx,
|
||||
-dsy_dt * stheta - dtheta_dt * ctheta * sy, dx_dt,
|
||||
dsx_dt * stheta + dtheta_dt * ctheta * sx,
|
||||
dsy_dt * ctheta - dtheta_dt * stheta * sy, dy_dt, 0.0, 0.0, 0.0;
|
||||
|
||||
return AffineWithJacobian(A, dAdt);
|
||||
}
|
||||
return AffineWithJacobian(A, dAdt);
|
||||
}
|
||||
|
||||
FloatType tmax_;
|
||||
FloatType x0_, x1_;
|
||||
FloatType y0_, y1_;
|
||||
FloatType theta0_, theta1_;
|
||||
FloatType sx0_, sx1_;
|
||||
FloatType sy0_, sy1_;
|
||||
};
|
||||
FloatType tmax_;
|
||||
FloatType x0_, x1_;
|
||||
FloatType y0_, y1_;
|
||||
FloatType theta0_, theta1_;
|
||||
FloatType sx0_, sx1_;
|
||||
FloatType sy0_, sy1_;
|
||||
};
|
||||
|
||||
class Object
|
||||
{
|
||||
public:
|
||||
Object(const std::string path_to_texture, const cv::Size& dst_size, const MotionParameters& motion_params,
|
||||
double median_blur, double gaussian_blur);
|
||||
class Object {
|
||||
public:
|
||||
Object(
|
||||
const std::string path_to_texture,
|
||||
const cv::Size& dst_size,
|
||||
const MotionParameters& motion_params,
|
||||
double median_blur,
|
||||
double gaussian_blur
|
||||
);
|
||||
|
||||
void draw(Time t, bool is_first_layer = false);
|
||||
void draw(Time t, bool is_first_layer = false);
|
||||
|
||||
cv::Mat canvas_;
|
||||
OpticFlow flow_;
|
||||
cv::Mat canvas_;
|
||||
OpticFlow flow_;
|
||||
|
||||
MotionParameters getMotionParameters() const { return p_; }
|
||||
MotionParameters getMotionParameters() const {
|
||||
return p_;
|
||||
}
|
||||
|
||||
Affine getK0() const { return K0_; }
|
||||
Affine getK1() const { return K1_; }
|
||||
Affine getK0() const {
|
||||
return K0_;
|
||||
}
|
||||
|
||||
private:
|
||||
cv::Mat texture_;
|
||||
cv::Size dst_size_;
|
||||
MotionParameters p_;
|
||||
Affine getK1() const {
|
||||
return K1_;
|
||||
}
|
||||
|
||||
Affine K0_, K1_;
|
||||
};
|
||||
private:
|
||||
cv::Mat texture_;
|
||||
cv::Size dst_size_;
|
||||
MotionParameters p_;
|
||||
|
||||
void getIntensityAndAlpha(const cv::Mat& image,
|
||||
int x, int y,
|
||||
ImageFloatType* intensity,
|
||||
ImageFloatType* alpha);
|
||||
Affine K0_, K1_;
|
||||
};
|
||||
|
||||
inline ImageFloatType bgrToGrayscale(uchar b,
|
||||
uchar g,
|
||||
uchar r)
|
||||
{
|
||||
// https://www.johndcook.com/blog/2009/08/24/algorithms-convert-color-grayscale/
|
||||
return 0.07 * static_cast<ImageFloatType>(b)
|
||||
+ 0.72 * static_cast<ImageFloatType>(g)
|
||||
+ 0.21 * static_cast<ImageFloatType>(r);
|
||||
}
|
||||
void getIntensityAndAlpha(
|
||||
const cv::Mat& image,
|
||||
int x,
|
||||
int y,
|
||||
ImageFloatType* intensity,
|
||||
ImageFloatType* alpha
|
||||
);
|
||||
|
||||
inline ImageFloatType bgrToGrayscale(uchar b, uchar g, uchar r) {
|
||||
// https://www.johndcook.com/blog/2009/08/24/algorithms-convert-color-grayscale/
|
||||
return 0.07 * static_cast<ImageFloatType>(b)
|
||||
+ 0.72 * static_cast<ImageFloatType>(g)
|
||||
+ 0.21 * static_cast<ImageFloatType>(r);
|
||||
}
|
||||
|
||||
} // namespace event_camera_simulator
|
||||
|
@ -1,11 +1,10 @@
|
||||
#include <esim/common/utils.hpp>
|
||||
#include <esim/imp_multi_objects_2d/imp_multi_objects_2d_renderer.hpp>
|
||||
|
||||
#include <opencv2/imgproc/imgproc.hpp>
|
||||
#include <opencv2/calib3d/calib3d.hpp>
|
||||
#include <opencv2/imgcodecs/imgcodecs.hpp>
|
||||
#include <glog/logging.h>
|
||||
#include <opencv2/calib3d/calib3d.hpp>
|
||||
#include <opencv2/core/eigen.hpp>
|
||||
#include <opencv2/imgcodecs/imgcodecs.hpp>
|
||||
#include <opencv2/imgproc/imgproc.hpp>
|
||||
#include <ze/common/file_utils.hpp>
|
||||
#include <ze/common/time_conversions.hpp>
|
||||
|
||||
@ -13,268 +12,312 @@ DECLARE_double(renderer_preprocess_median_blur);
|
||||
|
||||
DECLARE_double(renderer_preprocess_gaussian_blur);
|
||||
|
||||
DEFINE_string(path_to_sequence_file, "",
|
||||
"Path to the sequence file that describes the 2D, multi-object scene.");
|
||||
DEFINE_string(
|
||||
path_to_sequence_file,
|
||||
"",
|
||||
"Path to the sequence file that describes the 2D, multi-object scene."
|
||||
);
|
||||
|
||||
DEFINE_string(path_to_output_folder, "",
|
||||
"Path to the output folder where the flow ground truth files will be written");
|
||||
DEFINE_string(
|
||||
path_to_output_folder,
|
||||
"",
|
||||
"Path to the output folder where the flow ground truth files "
|
||||
"will be written"
|
||||
);
|
||||
|
||||
DEFINE_bool(output_reverse_displacement_map, false,
|
||||
"Whether to output the reverse displacement map (i.e., the displacement field that maps pixels at t=tmax to pixels at t=t0");
|
||||
DEFINE_bool(
|
||||
output_reverse_displacement_map,
|
||||
false,
|
||||
"Whether to output the reverse displacement map (i.e., the "
|
||||
"displacement field that maps pixels at t=tmax to pixels at t=t0"
|
||||
);
|
||||
|
||||
namespace event_camera_simulator {
|
||||
|
||||
MultiObject2DRenderer::MultiObject2DRenderer()
|
||||
{
|
||||
// Load sequence from file
|
||||
const std::string path_to_sequence_file = FLAGS_path_to_sequence_file;
|
||||
MultiObject2DRenderer::MultiObject2DRenderer() {
|
||||
// Load sequence from file
|
||||
const std::string path_to_sequence_file = FLAGS_path_to_sequence_file;
|
||||
|
||||
std::ifstream sequence_file;
|
||||
ze::openFileStream(path_to_sequence_file, &sequence_file);
|
||||
std::ifstream sequence_file;
|
||||
ze::openFileStream(path_to_sequence_file, &sequence_file);
|
||||
|
||||
std::string path_to_texture;
|
||||
double median_blur, gaussian_blur, theta0, theta1, x0, x1, y0, y1, sx0, sx1, sy0, sy1;
|
||||
std::string path_to_texture;
|
||||
double median_blur, gaussian_blur, theta0, theta1, x0, x1, y0, y1, sx0,
|
||||
sx1, sy0, sy1;
|
||||
|
||||
sequence_file >> width_ >> height_ >> tmax_;
|
||||
sequence_file >> width_ >> height_ >> tmax_;
|
||||
|
||||
CHECK_GT(width_, 0);
|
||||
CHECK_GT(height_, 0);
|
||||
CHECK_GT(tmax_, 0);
|
||||
CHECK_GT(width_, 0);
|
||||
CHECK_GT(height_, 0);
|
||||
CHECK_GT(tmax_, 0);
|
||||
|
||||
VLOG(1) << "width = " << width_ << ", height = " << height_;
|
||||
VLOG(1) << "tmax = " << tmax_;
|
||||
VLOG(1) << "width = " << width_ << ", height = " << height_;
|
||||
VLOG(1) << "tmax = " << tmax_;
|
||||
|
||||
while(sequence_file >> path_to_texture
|
||||
>> median_blur >> gaussian_blur
|
||||
>> theta0 >> theta1
|
||||
>> x0 >> x1
|
||||
>> y0 >> y1
|
||||
>> sx0 >> sx1
|
||||
>> sy0 >> sy1)
|
||||
{
|
||||
MotionParameters params(tmax_,
|
||||
theta0, theta1,
|
||||
x0, x1,
|
||||
y0, y1,
|
||||
sx0, sx1,
|
||||
sy0, sy1);
|
||||
while (sequence_file >> path_to_texture >> median_blur >> gaussian_blur
|
||||
>> theta0 >> theta1 >> x0 >> x1 >> y0 >> y1 >> sx0 >> sx1 >> sy0
|
||||
>> sy1) {
|
||||
MotionParameters params(
|
||||
tmax_,
|
||||
theta0,
|
||||
theta1,
|
||||
x0,
|
||||
x1,
|
||||
y0,
|
||||
y1,
|
||||
sx0,
|
||||
sx1,
|
||||
sy0,
|
||||
sy1
|
||||
);
|
||||
|
||||
objects_.emplace_back(std::make_shared<Object>(path_to_texture,
|
||||
cv::Size(width_, height_),
|
||||
params,
|
||||
median_blur,
|
||||
gaussian_blur));
|
||||
}
|
||||
|
||||
|
||||
if(FLAGS_path_to_output_folder != "")
|
||||
{
|
||||
outputGroundTruthData();
|
||||
}
|
||||
}
|
||||
|
||||
MultiObject2DRenderer::~MultiObject2DRenderer()
|
||||
{
|
||||
}
|
||||
|
||||
bool MultiObject2DRenderer::render(const Time t,
|
||||
const ImagePtr& out_image,
|
||||
const OpticFlowPtr& optic_flow_map) const {
|
||||
|
||||
if(ze::nanosecToSecTrunc(t) > tmax_)
|
||||
{
|
||||
return true;
|
||||
}
|
||||
|
||||
CHECK_EQ(out_image->rows, height_);
|
||||
CHECK_EQ(out_image->cols, width_);
|
||||
|
||||
out_image->setTo(0);
|
||||
optic_flow_map->setTo(0.);
|
||||
|
||||
for(int i=0; i<objects_.size(); ++i)
|
||||
{
|
||||
const bool is_first_layer = (i == 0);
|
||||
objects_[i]->draw(t, is_first_layer);
|
||||
}
|
||||
|
||||
// composite the local images drawn by each object
|
||||
// start from bottom image, merge it with the upper one
|
||||
// then go one level up, merge the resulting image with the upper one
|
||||
// and so on...
|
||||
ImageFloatType intensity;
|
||||
ImageFloatType alpha;
|
||||
|
||||
for(int i=0; i<objects_.size(); ++i)
|
||||
{
|
||||
const std::shared_ptr<Object>& object = objects_[i];
|
||||
const cv::Mat& image = object->canvas_;
|
||||
const OpticFlow& flow = object->flow_;
|
||||
|
||||
for(int y=0; y<out_image->rows; ++y)
|
||||
{
|
||||
for(int x=0; x<out_image->cols; ++x)
|
||||
{
|
||||
getIntensityAndAlpha(image, x, y, &intensity, &alpha);
|
||||
(*out_image)(y,x) = alpha * intensity + (1.-alpha) * (*out_image)(y,x);
|
||||
|
||||
if(alpha > 0)
|
||||
{
|
||||
(*optic_flow_map)(y,x) = flow(y,x);
|
||||
objects_.emplace_back(std::make_shared<Object>(
|
||||
path_to_texture,
|
||||
cv::Size(width_, height_),
|
||||
params,
|
||||
median_blur,
|
||||
gaussian_blur
|
||||
));
|
||||
}
|
||||
}
|
||||
|
||||
if (FLAGS_path_to_output_folder != "")
|
||||
outputGroundTruthData();
|
||||
}
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
MultiObject2DRenderer::~MultiObject2DRenderer() {}
|
||||
|
||||
void MultiObject2DRenderer::outputGroundTruthData()
|
||||
{
|
||||
// This function generates some ground truth information and output if to the FLAGS_path_to_output_folder
|
||||
// In principle, this information could be transmitted in a SimulationData structure and forwarded
|
||||
// to a Publisher object that writes it to disk.
|
||||
// However, for technical reasons, it is more convenient to write the displacement maps here, rather than integrate instantaneous
|
||||
// optic flow maps in a Publisher.
|
||||
bool MultiObject2DRenderer::render(
|
||||
const Time t,
|
||||
const ImagePtr& out_image,
|
||||
const OpticFlowPtr& optic_flow_map
|
||||
) const {
|
||||
if (ze::nanosecToSecTrunc(t) > tmax_)
|
||||
return true;
|
||||
|
||||
// The following ground truth information is computed below and output to the ground truth folder:
|
||||
// - Displacement maps from t=0 to t=tmax (and vice-versa)
|
||||
// - Images 0 and images 1
|
||||
CHECK_EQ(out_image->rows, height_);
|
||||
CHECK_EQ(out_image->cols, width_);
|
||||
|
||||
VLOG(1) << "Will output ground truth data to folder: " << FLAGS_path_to_output_folder;
|
||||
out_image->setTo(0);
|
||||
optic_flow_map->setTo(0.);
|
||||
|
||||
// Notation: the frame at time t=0 is denoted as frame 0, and the frame at time t=tmax is denoted as frame 1
|
||||
// Compute the entire displacement field from 0 to 1, for every layer
|
||||
const ze::real_t t0 = 0.0;
|
||||
const ze::real_t t1 = tmax_;
|
||||
|
||||
// Every entry in this vector is a displacement map that maps pixel locations in image 0
|
||||
// to the corresponding pixel location in image 1, for the layer i
|
||||
//
|
||||
// this individual displacement layers are then merged together to form the final
|
||||
// displacement map later
|
||||
//
|
||||
// Note: the reverse layer-wise displacement map can be computed as follows:
|
||||
// layer_displacement_01[i] = -layer_displacement_10[i]
|
||||
std::vector<OpticFlow> layer_displacements_10(objects_.size());
|
||||
for(int i=0; i<objects_.size(); ++i)
|
||||
{
|
||||
layer_displacements_10[i] = OpticFlow(height_, width_);
|
||||
const Object object = *(objects_[i]);
|
||||
|
||||
Affine A_t0_src = object.getMotionParameters().getAffineTransformationWithJacobian(t0).first;
|
||||
Affine A_t1_src = object.getMotionParameters().getAffineTransformationWithJacobian(t1).first;
|
||||
Affine A_t1_t0 = A_t1_src * A_t0_src.inv();
|
||||
|
||||
// M_t1_t0 maps any point on the first image to its position in the last image
|
||||
Affine M_t1_t0 = object.getK1() * A_t1_t0 * object.getK1().inv();
|
||||
|
||||
for(int y=0; y<height_; ++y)
|
||||
{
|
||||
for(int x=0; x<width_; ++x)
|
||||
{
|
||||
FloatType x_t1 = M_t1_t0(0,0) * x + M_t1_t0(0,1) * y + M_t1_t0(0,2);
|
||||
FloatType y_t1 = M_t1_t0(1,0) * x + M_t1_t0(1,1) * y + M_t1_t0(1,2);
|
||||
|
||||
FloatType displacement_x, displacement_y;
|
||||
// if the pixel went out of the field of view, we assign a displacement of 0 (convention)
|
||||
displacement_x = (x_t1 >= 0 && x_t1 < width_) ? (ImageFloatType) x_t1 - (ImageFloatType) x : 0.;
|
||||
displacement_y = (y_t1 >= 0 && y_t1 < height_) ? (ImageFloatType) y_t1 - (ImageFloatType) y : 0.;
|
||||
|
||||
layer_displacements_10[i](y,x)[0] = displacement_x;
|
||||
layer_displacements_10[i](y,x)[1] = displacement_y;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
ImageFloatType intensity, alpha;
|
||||
|
||||
// First, merge the displacement map from 0 to 1
|
||||
OpticFlow displacement_map_10(height_, width_); // displacement map from 0 to 1
|
||||
Image image0(height_, width_);
|
||||
image0.setTo(0);
|
||||
for(int i=0; i<objects_.size(); ++i)
|
||||
{
|
||||
const bool is_first_layer = (i == 0);
|
||||
objects_[i]->draw(t0, is_first_layer);
|
||||
}
|
||||
|
||||
for(int i=0; i<objects_.size(); ++i)
|
||||
{
|
||||
const std::shared_ptr<Object>& object = objects_[i];
|
||||
for(int y=0; y<height_; ++y)
|
||||
{
|
||||
for(int x=0; x<width_; ++x)
|
||||
{
|
||||
getIntensityAndAlpha(object->canvas_, x, y, &intensity, &alpha);
|
||||
image0(y,x) = alpha * intensity + (1.-alpha) * image0(y,x);
|
||||
if(alpha > 0)
|
||||
{
|
||||
displacement_map_10(y,x) = layer_displacements_10[i](y,x);
|
||||
for (int i = 0; i < objects_.size(); ++i) {
|
||||
const bool is_first_layer = (i == 0);
|
||||
objects_[i]->draw(t, is_first_layer);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Second, create displacement map from 1 to 0
|
||||
OpticFlow displacement_map_01(height_, width_); // displacement map from 1 to 0
|
||||
Image image1(height_, width_);
|
||||
image1.setTo(0);
|
||||
for(int i=0; i<objects_.size(); ++i)
|
||||
{
|
||||
const bool is_first_layer = (i == 0);
|
||||
objects_[i]->draw(ze::secToNanosec(t1), is_first_layer);
|
||||
}
|
||||
// composite the local images drawn by each object
|
||||
// start from bottom image, merge it with the upper one
|
||||
// then go one level up, merge the resulting image with the upper one
|
||||
// and so on...
|
||||
ImageFloatType intensity;
|
||||
ImageFloatType alpha;
|
||||
|
||||
for(int i=0; i<objects_.size(); ++i)
|
||||
{
|
||||
for(int y=0; y<height_; ++y)
|
||||
{
|
||||
for(int x=0; x<width_; ++x)
|
||||
{
|
||||
getIntensityAndAlpha(objects_[i]->canvas_, x, y, &intensity, &alpha);
|
||||
image1(y,x) = alpha * intensity + (1.-alpha) * image1(y,x);
|
||||
if(alpha > 0)
|
||||
{
|
||||
displacement_map_01(y,x) = -layer_displacements_10[i](y,x);
|
||||
for (int i = 0; i < objects_.size(); ++i) {
|
||||
const std::shared_ptr<Object>& object = objects_[i];
|
||||
const cv::Mat& image = object->canvas_;
|
||||
const OpticFlow& flow = object->flow_;
|
||||
|
||||
for (int y = 0; y < out_image->rows; ++y) {
|
||||
for (int x = 0; x < out_image->cols; ++x) {
|
||||
getIntensityAndAlpha(image, x, y, &intensity, &alpha);
|
||||
(*out_image)(y, x) =
|
||||
alpha * intensity + (1. - alpha) * (*out_image)(y, x);
|
||||
|
||||
if (alpha > 0)
|
||||
(*optic_flow_map)(y, x) = flow(y, x);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
std::ofstream displacement_file_10, displacement_file_01;
|
||||
ze::openOutputFileStream(ze::joinPath(FLAGS_path_to_output_folder, "displacement_10.txt"), &displacement_file_10);
|
||||
void MultiObject2DRenderer::outputGroundTruthData() {
|
||||
// This function generates some ground truth information and output if
|
||||
// to the FLAGS_path_to_output_folder In principle, this information
|
||||
// could be transmitted in a SimulationData structure and forwarded to a
|
||||
// Publisher object that writes it to disk. However, for technical
|
||||
// reasons, it is more convenient to write the displacement maps here,
|
||||
// rather than integrate instantaneous optic flow maps in a Publisher.
|
||||
|
||||
if(FLAGS_output_reverse_displacement_map)
|
||||
{
|
||||
ze::openOutputFileStream(ze::joinPath(FLAGS_path_to_output_folder, "displacement_01.txt"), &displacement_file_01);
|
||||
}
|
||||
// The following ground truth information is computed below and output
|
||||
// to the ground truth folder:
|
||||
// - Displacement maps from t=0 to t=tmax (and vice-versa)
|
||||
// - Images 0 and images 1
|
||||
|
||||
for(int y=0; y<height_; ++y)
|
||||
{
|
||||
for(int x=0; x<width_; ++x)
|
||||
{
|
||||
displacement_file_10 << displacement_map_10(y,x)[0] << " " << displacement_map_10(y,x)[1] << std::endl;
|
||||
VLOG(1) << "Will output ground truth data to folder: "
|
||||
<< FLAGS_path_to_output_folder;
|
||||
|
||||
if(FLAGS_output_reverse_displacement_map)
|
||||
{
|
||||
displacement_file_01 << displacement_map_01(y,x)[0] << " " << displacement_map_01(y,x)[1] << std::endl;
|
||||
}
|
||||
// Notation: the frame at time t=0 is denoted as frame 0, and the frame
|
||||
// at time t=tmax is denoted as frame 1 Compute the entire displacement
|
||||
// field from 0 to 1, for every layer
|
||||
const ze::real_t t0 = 0.0;
|
||||
const ze::real_t t1 = tmax_;
|
||||
|
||||
// Every entry in this vector is a displacement map that maps pixel
|
||||
// locations in image 0 to the corresponding pixel location in image 1,
|
||||
// for the layer i
|
||||
//
|
||||
// this individual displacement layers are then merged together to form
|
||||
// the final displacement map later
|
||||
//
|
||||
// Note: the reverse layer-wise displacement map can be computed as
|
||||
// follows:
|
||||
// layer_displacement_01[i] = -layer_displacement_10[i]
|
||||
std::vector<OpticFlow> layer_displacements_10(objects_.size());
|
||||
for (int i = 0; i < objects_.size(); ++i) {
|
||||
layer_displacements_10[i] = OpticFlow(height_, width_);
|
||||
const Object object = *(objects_[i]);
|
||||
|
||||
Affine A_t0_src = object.getMotionParameters()
|
||||
.getAffineTransformationWithJacobian(t0)
|
||||
.first;
|
||||
Affine A_t1_src = object.getMotionParameters()
|
||||
.getAffineTransformationWithJacobian(t1)
|
||||
.first;
|
||||
Affine A_t1_t0 = A_t1_src * A_t0_src.inv();
|
||||
|
||||
// M_t1_t0 maps any point on the first image to its position in the
|
||||
// last image
|
||||
Affine M_t1_t0 = object.getK1() * A_t1_t0 * object.getK1().inv();
|
||||
|
||||
for (int y = 0; y < height_; ++y) {
|
||||
for (int x = 0; x < width_; ++x) {
|
||||
FloatType x_t1 =
|
||||
M_t1_t0(0, 0) * x + M_t1_t0(0, 1) * y + M_t1_t0(0, 2);
|
||||
FloatType y_t1 =
|
||||
M_t1_t0(1, 0) * x + M_t1_t0(1, 1) * y + M_t1_t0(1, 2);
|
||||
|
||||
FloatType displacement_x, displacement_y;
|
||||
// if the pixel went out of the field of view, we assign a
|
||||
// displacement of 0 (convention)
|
||||
displacement_x =
|
||||
(x_t1 >= 0 && x_t1 < width_)
|
||||
? (ImageFloatType) x_t1 - (ImageFloatType) x
|
||||
: 0.;
|
||||
displacement_y =
|
||||
(y_t1 >= 0 && y_t1 < height_)
|
||||
? (ImageFloatType) y_t1 - (ImageFloatType) y
|
||||
: 0.;
|
||||
|
||||
layer_displacements_10[i](y, x)[0] = displacement_x;
|
||||
layer_displacements_10[i](y, x)[1] = displacement_y;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
ImageFloatType intensity, alpha;
|
||||
|
||||
// First, merge the displacement map from 0 to 1
|
||||
OpticFlow displacement_map_10(
|
||||
height_,
|
||||
width_
|
||||
); // displacement map from 0 to 1
|
||||
Image image0(height_, width_);
|
||||
image0.setTo(0);
|
||||
for (int i = 0; i < objects_.size(); ++i) {
|
||||
const bool is_first_layer = (i == 0);
|
||||
objects_[i]->draw(t0, is_first_layer);
|
||||
}
|
||||
|
||||
for (int i = 0; i < objects_.size(); ++i) {
|
||||
const std::shared_ptr<Object>& object = objects_[i];
|
||||
for (int y = 0; y < height_; ++y) {
|
||||
for (int x = 0; x < width_; ++x) {
|
||||
getIntensityAndAlpha(
|
||||
object->canvas_,
|
||||
x,
|
||||
y,
|
||||
&intensity,
|
||||
&alpha
|
||||
);
|
||||
image0(y, x) =
|
||||
alpha * intensity + (1. - alpha) * image0(y, x);
|
||||
if (alpha > 0) {
|
||||
displacement_map_10(y, x) =
|
||||
layer_displacements_10[i](y, x);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Second, create displacement map from 1 to 0
|
||||
OpticFlow displacement_map_01(
|
||||
height_,
|
||||
width_
|
||||
); // displacement map from 1 to 0
|
||||
Image image1(height_, width_);
|
||||
image1.setTo(0);
|
||||
for (int i = 0; i < objects_.size(); ++i) {
|
||||
const bool is_first_layer = (i == 0);
|
||||
objects_[i]->draw(ze::secToNanosec(t1), is_first_layer);
|
||||
}
|
||||
|
||||
for (int i = 0; i < objects_.size(); ++i) {
|
||||
for (int y = 0; y < height_; ++y) {
|
||||
for (int x = 0; x < width_; ++x) {
|
||||
getIntensityAndAlpha(
|
||||
objects_[i]->canvas_,
|
||||
x,
|
||||
y,
|
||||
&intensity,
|
||||
&alpha
|
||||
);
|
||||
image1(y, x) =
|
||||
alpha * intensity + (1. - alpha) * image1(y, x);
|
||||
if (alpha > 0) {
|
||||
displacement_map_01(y, x) =
|
||||
-layer_displacements_10[i](y, x);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
std::ofstream displacement_file_10, displacement_file_01;
|
||||
ze::openOutputFileStream(
|
||||
ze::joinPath(FLAGS_path_to_output_folder, "displacement_10.txt"),
|
||||
&displacement_file_10
|
||||
);
|
||||
|
||||
if (FLAGS_output_reverse_displacement_map) {
|
||||
ze::openOutputFileStream(
|
||||
ze::joinPath(
|
||||
FLAGS_path_to_output_folder,
|
||||
"displacement_01.txt"
|
||||
),
|
||||
&displacement_file_01
|
||||
);
|
||||
}
|
||||
|
||||
for (int y = 0; y < height_; ++y) {
|
||||
for (int x = 0; x < width_; ++x) {
|
||||
displacement_file_10 << displacement_map_10(y, x)[0] << " "
|
||||
<< displacement_map_10(y, x)[1]
|
||||
<< std::endl;
|
||||
|
||||
if (FLAGS_output_reverse_displacement_map) {
|
||||
displacement_file_01 << displacement_map_01(y, x)[0] << " "
|
||||
<< displacement_map_01(y, x)[1]
|
||||
<< std::endl;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
displacement_file_10.close();
|
||||
if (FLAGS_output_reverse_displacement_map)
|
||||
displacement_file_01.close();
|
||||
|
||||
cv::Mat disp_image0, disp_image1;
|
||||
image0.convertTo(disp_image0, CV_8U, 255);
|
||||
image1.convertTo(disp_image1, CV_8U, 255);
|
||||
cv::imwrite(
|
||||
ze::joinPath(FLAGS_path_to_output_folder, "image0.png"),
|
||||
disp_image0
|
||||
);
|
||||
cv::imwrite(
|
||||
ze::joinPath(FLAGS_path_to_output_folder, "image1.png"),
|
||||
disp_image1
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
displacement_file_10.close();
|
||||
if(FLAGS_output_reverse_displacement_map)
|
||||
{
|
||||
displacement_file_01.close();
|
||||
}
|
||||
|
||||
cv::Mat disp_image0, disp_image1;
|
||||
image0.convertTo(disp_image0, CV_8U, 255);
|
||||
image1.convertTo(disp_image1, CV_8U, 255);
|
||||
cv::imwrite(ze::joinPath(FLAGS_path_to_output_folder, "image0.png"), disp_image0);
|
||||
cv::imwrite(ze::joinPath(FLAGS_path_to_output_folder, "image1.png"), disp_image1);
|
||||
}
|
||||
|
||||
} // namespace event_camera_simulator
|
||||
|
@ -1,129 +1,131 @@
|
||||
#include <esim/imp_multi_objects_2d/object.hpp>
|
||||
#include <opencv2/imgproc/imgproc.hpp>
|
||||
#include <opencv2/imgcodecs/imgcodecs.hpp>
|
||||
#include <opencv2/imgproc/imgproc.hpp>
|
||||
#include <ze/common/time_conversions.hpp>
|
||||
|
||||
namespace event_camera_simulator {
|
||||
|
||||
bool loadTexture(const std::string& path_to_img, cv::Mat* img,
|
||||
double median_blur, double gaussian_blur)
|
||||
{
|
||||
CHECK(img);
|
||||
VLOG(1) << "Loading texture file from file: " << path_to_img << ".";
|
||||
bool loadTexture(
|
||||
const std::string& path_to_img,
|
||||
cv::Mat* img,
|
||||
double median_blur,
|
||||
double gaussian_blur
|
||||
) {
|
||||
CHECK(img);
|
||||
VLOG(1) << "Loading texture file from file: " << path_to_img << ".";
|
||||
|
||||
*img = cv::imread(path_to_img, cv::IMREAD_UNCHANGED);
|
||||
*img = cv::imread(path_to_img, cv::IMREAD_UNCHANGED);
|
||||
|
||||
if(!img->data)
|
||||
{
|
||||
LOG(FATAL) << "Could not open image at: " << path_to_img << ".";
|
||||
return false;
|
||||
}
|
||||
if (!img->data) {
|
||||
LOG(FATAL) << "Could not open image at: " << path_to_img << ".";
|
||||
return false;
|
||||
}
|
||||
|
||||
if(median_blur > 1)
|
||||
{
|
||||
VLOG(1) << "Pre-filtering the texture with median filter of size: "
|
||||
<< median_blur << ".";
|
||||
cv::medianBlur(*img, *img, median_blur);
|
||||
}
|
||||
if (median_blur > 1) {
|
||||
VLOG(1) << "Pre-filtering the texture with median filter of size: "
|
||||
<< median_blur << ".";
|
||||
cv::medianBlur(*img, *img, median_blur);
|
||||
}
|
||||
|
||||
if(gaussian_blur > 0)
|
||||
{
|
||||
VLOG(1) << "Pre-filtering the texture with gaussian filter of size: "
|
||||
<< gaussian_blur << ".";
|
||||
cv::GaussianBlur(*img, *img, cv::Size(21,21), gaussian_blur);
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
Object::Object(const std::string path_to_texture, const cv::Size& dst_size, const MotionParameters& motion_params,
|
||||
double median_blur, double gaussian_blur)
|
||||
: dst_size_(dst_size),
|
||||
p_(motion_params)
|
||||
{
|
||||
loadTexture(path_to_texture, &texture_,
|
||||
median_blur,
|
||||
gaussian_blur);
|
||||
|
||||
K0_ << texture_.cols, 0, 0.5 * texture_.cols,
|
||||
0, texture_.rows, 0.5 * texture_.rows,
|
||||
0, 0, 1;
|
||||
|
||||
K1_ << dst_size_.width, 0, 0.5 * dst_size_.width,
|
||||
0, dst_size_.height, 0.5 * dst_size_.height,
|
||||
0, 0, 1;
|
||||
|
||||
canvas_ = cv::Mat(dst_size, CV_8UC4);
|
||||
canvas_.setTo(0);
|
||||
flow_ = OpticFlow(dst_size);
|
||||
flow_.setTo(0);
|
||||
}
|
||||
|
||||
void Object::draw(Time t, bool is_first_layer)
|
||||
{
|
||||
canvas_.setTo(0);
|
||||
|
||||
ze::real_t ts = ze::nanosecToSecTrunc(t);
|
||||
|
||||
ts = std::min(ts, p_.tmax_);
|
||||
|
||||
AffineWithJacobian A10_jac = p_.getAffineTransformationWithJacobian(ts);
|
||||
Affine& A10 = A10_jac.first;
|
||||
Affine& dA10dt = A10_jac.second;
|
||||
|
||||
// test jacobian
|
||||
// const ze::real_t h = 1e-5;
|
||||
// AffineWithJacobian A = p_.getAffineTransformationWithJacobian(ts);
|
||||
// AffineWithJacobian Ah = p_.getAffineTransformationWithJacobian(ts+h);
|
||||
// Affine dAdt_numeric = 1./h * (Ah.first-A.first);
|
||||
|
||||
// LOG(INFO) << dAdt_numeric;
|
||||
// LOG(INFO) << A.second;
|
||||
|
||||
Affine M_10 = K1_ * A10 * K0_.inv();
|
||||
Affine dM10_dt = K1_ * dA10dt * K0_.inv();
|
||||
|
||||
// warpAffine requires M_dst_src unless the WARP_INVERSE_MAP flag is passed
|
||||
// in which case it will require M_src_dst
|
||||
// TODO: can we do something more efficient than fully warping the 4 channels (BGR+alpha)?
|
||||
int border_mode = is_first_layer ? cv::BORDER_REFLECT101 : cv::BORDER_CONSTANT;
|
||||
cv::warpPerspective(texture_,
|
||||
canvas_,
|
||||
M_10,
|
||||
canvas_.size(),
|
||||
cv::INTER_LINEAR,
|
||||
border_mode);
|
||||
|
||||
cv::Matx<FloatType, 3, 3> SS = dM10_dt * M_10.inv();
|
||||
|
||||
for(int y=0; y<flow_.rows; ++y)
|
||||
{
|
||||
for(int x=0; x<flow_.cols; ++x)
|
||||
{
|
||||
flow_(y,x)[0] = SS(0,0) * x + SS(0,1) * y + SS(0,2);
|
||||
flow_(y,x)[1] = SS(1,0) * x + SS(1,1) * y + SS(1,2);
|
||||
if (gaussian_blur > 0) {
|
||||
VLOG(1
|
||||
) << "Pre-filtering the texture with gaussian filter of size: "
|
||||
<< gaussian_blur << ".";
|
||||
cv::GaussianBlur(*img, *img, cv::Size(21, 21), gaussian_blur);
|
||||
}
|
||||
return true;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void getIntensityAndAlpha(const cv::Mat& image,
|
||||
int x, int y,
|
||||
ImageFloatType* intensity,
|
||||
ImageFloatType* alpha)
|
||||
{
|
||||
CHECK(image.type() == CV_8UC3 || image.type() == CV_8UC4);
|
||||
Object::Object(
|
||||
const std::string path_to_texture,
|
||||
const cv::Size& dst_size,
|
||||
const MotionParameters& motion_params,
|
||||
double median_blur,
|
||||
double gaussian_blur
|
||||
)
|
||||
: dst_size_(dst_size),
|
||||
p_(motion_params) {
|
||||
loadTexture(path_to_texture, &texture_, median_blur, gaussian_blur);
|
||||
|
||||
if(image.type() == CV_8UC3)
|
||||
{
|
||||
cv::Vec3b val = image.at<cv::Vec3b>(y,x);
|
||||
*intensity = bgrToGrayscale(val[0], val[1], val[2]) / 255.;
|
||||
*alpha = 1.;
|
||||
}
|
||||
else
|
||||
{
|
||||
cv::Vec4b val = image.at<cv::Vec4b>(y,x);
|
||||
*intensity = bgrToGrayscale(val[0], val[1], val[2]) / 255.;
|
||||
*alpha = static_cast<ImageFloatType>(val[3]) / 255.;
|
||||
}
|
||||
}
|
||||
K0_ << texture_.cols, 0, 0.5 * texture_.cols, 0, texture_.rows,
|
||||
0.5 * texture_.rows, 0, 0, 1;
|
||||
|
||||
K1_ << dst_size_.width, 0, 0.5 * dst_size_.width, 0, dst_size_.height,
|
||||
0.5 * dst_size_.height, 0, 0, 1;
|
||||
|
||||
canvas_ = cv::Mat(dst_size, CV_8UC4);
|
||||
canvas_.setTo(0);
|
||||
flow_ = OpticFlow(dst_size);
|
||||
flow_.setTo(0);
|
||||
}
|
||||
|
||||
void Object::draw(Time t, bool is_first_layer) {
|
||||
canvas_.setTo(0);
|
||||
|
||||
ze::real_t ts = ze::nanosecToSecTrunc(t);
|
||||
|
||||
ts = std::min(ts, p_.tmax_);
|
||||
|
||||
AffineWithJacobian A10_jac = p_.getAffineTransformationWithJacobian(ts);
|
||||
Affine& A10 = A10_jac.first;
|
||||
Affine& dA10dt = A10_jac.second;
|
||||
|
||||
// test jacobian
|
||||
// const ze::real_t h = 1e-5;
|
||||
// AffineWithJacobian A = p_.getAffineTransformationWithJacobian(ts);
|
||||
// AffineWithJacobian Ah =
|
||||
// p_.getAffineTransformationWithJacobian(ts+h); Affine dAdt_numeric
|
||||
// = 1./h * (Ah.first-A.first);
|
||||
|
||||
// LOG(INFO) << dAdt_numeric;
|
||||
// LOG(INFO) << A.second;
|
||||
|
||||
Affine M_10 = K1_ * A10 * K0_.inv();
|
||||
Affine dM10_dt = K1_ * dA10dt * K0_.inv();
|
||||
|
||||
// warpAffine requires M_dst_src unless the WARP_INVERSE_MAP flag is
|
||||
// passed in which case it will require M_src_dst
|
||||
// TODO: can we do something more efficient than fully warping the 4
|
||||
// channels (BGR+alpha)?
|
||||
int border_mode =
|
||||
is_first_layer ? cv::BORDER_REFLECT101 : cv::BORDER_CONSTANT;
|
||||
cv::warpPerspective(
|
||||
texture_,
|
||||
canvas_,
|
||||
M_10,
|
||||
canvas_.size(),
|
||||
cv::INTER_LINEAR,
|
||||
border_mode
|
||||
);
|
||||
|
||||
cv::Matx<FloatType, 3, 3> SS = dM10_dt * M_10.inv();
|
||||
|
||||
for (int y = 0; y < flow_.rows; ++y) {
|
||||
for (int x = 0; x < flow_.cols; ++x) {
|
||||
flow_(y, x)[0] = SS(0, 0) * x + SS(0, 1) * y + SS(0, 2);
|
||||
flow_(y, x)[1] = SS(1, 0) * x + SS(1, 1) * y + SS(1, 2);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void getIntensityAndAlpha(
|
||||
const cv::Mat& image,
|
||||
int x,
|
||||
int y,
|
||||
ImageFloatType* intensity,
|
||||
ImageFloatType* alpha
|
||||
) {
|
||||
CHECK(image.type() == CV_8UC3 || image.type() == CV_8UC4);
|
||||
|
||||
if (image.type() == CV_8UC3) {
|
||||
cv::Vec3b val = image.at<cv::Vec3b>(y, x);
|
||||
*intensity = bgrToGrayscale(val[0], val[1], val[2]) / 255.;
|
||||
*alpha = 1.;
|
||||
} else {
|
||||
cv::Vec4b val = image.at<cv::Vec4b>(y, x);
|
||||
*intensity = bgrToGrayscale(val[0], val[1], val[2]) / 255.;
|
||||
*alpha = static_cast<ImageFloatType>(val[3]) / 255.;
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace event_camera_simulator
|
||||
|
@ -2,134 +2,164 @@
|
||||
|
||||
#include <esim/rendering/renderer_base.hpp>
|
||||
|
||||
class Shader; // fwd
|
||||
class Model; // fwd
|
||||
class Shader; // fwd
|
||||
class Model; // fwd
|
||||
class GLFWwindow; // fwd
|
||||
|
||||
namespace event_camera_simulator {
|
||||
|
||||
//! Rendering engine based on OpenGL
|
||||
class OpenGLRenderer : public Renderer
|
||||
{
|
||||
public:
|
||||
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
|
||||
//! Rendering engine based on OpenGL
|
||||
class OpenGLRenderer : public Renderer {
|
||||
public:
|
||||
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
|
||||
|
||||
ZE_POINTER_TYPEDEFS(Renderer);
|
||||
ZE_POINTER_TYPEDEFS(Renderer);
|
||||
|
||||
OpenGLRenderer();
|
||||
OpenGLRenderer();
|
||||
|
||||
~OpenGLRenderer();
|
||||
~OpenGLRenderer();
|
||||
|
||||
//! Render an image at a given pose.
|
||||
virtual void render(const Transformation& T_W_C,
|
||||
const std::vector<Transformation>& T_W_OBJ,
|
||||
const ImagePtr& out_image,
|
||||
const DepthmapPtr& out_depthmap) const;
|
||||
//! Render an image at a given pose.
|
||||
virtual void render(
|
||||
const Transformation& T_W_C,
|
||||
const std::vector<Transformation>& T_W_OBJ,
|
||||
const ImagePtr& out_image,
|
||||
const DepthmapPtr& out_depthmap
|
||||
) const;
|
||||
|
||||
//! Returns true if the rendering engine can compute optic flow, false otherwise
|
||||
virtual bool canComputeOpticFlow() const override { return true; }
|
||||
//! Returns true if the rendering engine can compute optic flow, false
|
||||
//! otherwise
|
||||
virtual bool canComputeOpticFlow() const override {
|
||||
return true;
|
||||
}
|
||||
|
||||
//! Render an image + depth map + optic flow map at a given pose,
|
||||
//! given the camera linear and angular velocity
|
||||
virtual void renderWithFlow(const Transformation& T_W_C,
|
||||
const LinearVelocity& v_WC,
|
||||
const AngularVelocity& w_WC,
|
||||
const std::vector<Transformation>& T_W_OBJ,
|
||||
const std::vector<LinearVelocity>& linear_velocity_obj,
|
||||
const std::vector<AngularVelocity>& angular_velocity_obj,
|
||||
const ImagePtr& out_image,
|
||||
const DepthmapPtr& out_depthmap,
|
||||
const OpticFlowPtr& optic_flow_map) const override;
|
||||
//! Render an image + depth map + optic flow map at a given pose,
|
||||
//! given the camera linear and angular velocity
|
||||
virtual void renderWithFlow(
|
||||
const Transformation& T_W_C,
|
||||
const LinearVelocity& v_WC,
|
||||
const AngularVelocity& w_WC,
|
||||
const std::vector<Transformation>& T_W_OBJ,
|
||||
const std::vector<LinearVelocity>& linear_velocity_obj,
|
||||
const std::vector<AngularVelocity>& angular_velocity_obj,
|
||||
const ImagePtr& out_image,
|
||||
const DepthmapPtr& out_depthmap,
|
||||
const OpticFlowPtr& optic_flow_map
|
||||
) const override;
|
||||
|
||||
//! Sets the camera
|
||||
virtual void setCamera(const ze::Camera::Ptr& camera);
|
||||
//! Sets the camera
|
||||
virtual void setCamera(const ze::Camera::Ptr& camera);
|
||||
|
||||
protected:
|
||||
protected:
|
||||
void init();
|
||||
|
||||
void init();
|
||||
/**
|
||||
@brief basic function to produce an OpenGL projection matrix and
|
||||
associated viewport parameters which match a given set of camera
|
||||
intrinsics. This is currently written for the Eigen linear algebra
|
||||
library, however it should be straightforward to port to any 4x4 matrix
|
||||
class.
|
||||
@param[out] frustum Eigen::Matrix4d projection matrix. Eigen stores
|
||||
these matrices in column-major (i.e. OpenGL) order.
|
||||
@param[in] alpha x-axis focal length, from camera intrinsic matrix
|
||||
@param[in] alpha y-axis focal length, from camera intrinsic matrix
|
||||
@param[in] skew x and y axis skew, from camera intrinsic matrix
|
||||
@param[in] u0 image origin x-coordinate, from camera intrinsic matrix
|
||||
@param[in] v0 image origin y-coordinate, from camera intrinsic matrix
|
||||
@param[in] img_width image width, in pixels
|
||||
@param[in] img_height image height, in pixels
|
||||
@param[in] near_clip near clipping plane z-location, can be set
|
||||
arbitrarily > 0, controls the mapping of z-coordinates for OpenGL
|
||||
@param[in] far_clip far clipping plane z-location, can be set
|
||||
arbitrarily > near_clip, controls the mapping of z-coordinate for
|
||||
OpenGL
|
||||
|
||||
/**
|
||||
@brief basic function to produce an OpenGL projection matrix and associated viewport parameters
|
||||
which match a given set of camera intrinsics. This is currently written for the Eigen linear
|
||||
algebra library, however it should be straightforward to port to any 4x4 matrix class.
|
||||
@param[out] frustum Eigen::Matrix4d projection matrix. Eigen stores these matrices in column-major (i.e. OpenGL) order.
|
||||
@param[in] alpha x-axis focal length, from camera intrinsic matrix
|
||||
@param[in] alpha y-axis focal length, from camera intrinsic matrix
|
||||
@param[in] skew x and y axis skew, from camera intrinsic matrix
|
||||
@param[in] u0 image origin x-coordinate, from camera intrinsic matrix
|
||||
@param[in] v0 image origin y-coordinate, from camera intrinsic matrix
|
||||
@param[in] img_width image width, in pixels
|
||||
@param[in] img_height image height, in pixels
|
||||
@param[in] near_clip near clipping plane z-location, can be set arbitrarily > 0, controls the mapping of z-coordinates for OpenGL
|
||||
@param[in] far_clip far clipping plane z-location, can be set arbitrarily > near_clip, controls the mapping of z-coordinate for OpenGL
|
||||
Code adapted from:
|
||||
- http://ksimek.github.io/2013/06/03/calibrated_cameras_in_opengl/
|
||||
- https://pastebin.com/h8nYNWJY
|
||||
*/
|
||||
void build_opengl_projection_for_intrinsics(
|
||||
Eigen::Matrix4d& frustum,
|
||||
double alpha,
|
||||
double beta,
|
||||
double u0,
|
||||
double v0,
|
||||
int img_width,
|
||||
int img_height,
|
||||
double near_clip,
|
||||
double far_clip
|
||||
) const {
|
||||
// These parameters define the final viewport that is rendered into
|
||||
// by the camera.
|
||||
double L = 0;
|
||||
double R = img_width;
|
||||
double B = 0;
|
||||
double T = img_height;
|
||||
|
||||
Code adapted from:
|
||||
- http://ksimek.github.io/2013/06/03/calibrated_cameras_in_opengl/
|
||||
- https://pastebin.com/h8nYNWJY
|
||||
*/
|
||||
void build_opengl_projection_for_intrinsics(Eigen::Matrix4d &frustum, double alpha, double beta, double u0, double v0, int img_width, int img_height, double near_clip, double far_clip) const {
|
||||
// near and far clipping planes, these only matter for the mapping
|
||||
// from world-space z-coordinate into the depth coordinate for
|
||||
// OpenGL
|
||||
double N = near_clip;
|
||||
double F = far_clip;
|
||||
|
||||
// These parameters define the final viewport that is rendered into by
|
||||
// the camera.
|
||||
double L = 0;
|
||||
double R = img_width;
|
||||
double B = 0;
|
||||
double T = img_height;
|
||||
double skew = 0.0;
|
||||
|
||||
// near and far clipping planes, these only matter for the mapping from
|
||||
// world-space z-coordinate into the depth coordinate for OpenGL
|
||||
double N = near_clip;
|
||||
double F = far_clip;
|
||||
// construct an orthographic matrix which maps from projected
|
||||
// coordinates to normalized device coordinates in the range
|
||||
// [-1, 1]. OpenGL then maps coordinates in NDC to the current
|
||||
// viewport
|
||||
Eigen::Matrix4d ortho = Eigen::Matrix4d::Zero();
|
||||
ortho(0, 0) = 2.0 / (R - L);
|
||||
ortho(0, 3) = -(R + L) / (R - L);
|
||||
ortho(1, 1) = 2.0 / (T - B);
|
||||
ortho(1, 3) = -(T + B) / (T - B);
|
||||
ortho(2, 2) = -2.0 / (F - N);
|
||||
ortho(2, 3) = -(F + N) / (F - N);
|
||||
ortho(3, 3) = 1.0;
|
||||
|
||||
double skew = 0.0;
|
||||
// construct a projection matrix, this is identical to the
|
||||
// projection matrix computed for the intrinsicx, except an
|
||||
// additional row is inserted to map the z-coordinate to
|
||||
// OpenGL.
|
||||
Eigen::Matrix4d tproj = Eigen::Matrix4d::Zero();
|
||||
tproj(0, 0) = alpha;
|
||||
tproj(0, 1) = skew;
|
||||
tproj(0, 2) = -u0;
|
||||
tproj(1, 1) = beta;
|
||||
tproj(1, 2) = -v0;
|
||||
tproj(2, 2) = N + F;
|
||||
tproj(2, 3) = N * F;
|
||||
tproj(3, 2) = -1.0;
|
||||
|
||||
// construct an orthographic matrix which maps from projected
|
||||
// coordinates to normalized device coordinates in the range
|
||||
// [-1, 1]. OpenGL then maps coordinates in NDC to the current
|
||||
// viewport
|
||||
Eigen::Matrix4d ortho = Eigen::Matrix4d::Zero();
|
||||
ortho(0,0) = 2.0/(R-L); ortho(0,3) = -(R+L)/(R-L);
|
||||
ortho(1,1) = 2.0/(T-B); ortho(1,3) = -(T+B)/(T-B);
|
||||
ortho(2,2) = -2.0/(F-N); ortho(2,3) = -(F+N)/(F-N);
|
||||
ortho(3,3) = 1.0;
|
||||
// resulting OpenGL frustum is the product of the orthographic
|
||||
// mapping to normalized device coordinates and the augmented
|
||||
// camera intrinsic matrix
|
||||
frustum = ortho * tproj;
|
||||
}
|
||||
|
||||
// construct a projection matrix, this is identical to the
|
||||
// projection matrix computed for the intrinsicx, except an
|
||||
// additional row is inserted to map the z-coordinate to
|
||||
// OpenGL.
|
||||
Eigen::Matrix4d tproj = Eigen::Matrix4d::Zero();
|
||||
tproj(0,0) = alpha; tproj(0,1) = skew; tproj(0,2) = -u0;
|
||||
tproj(1,1) = beta; tproj(1,2) = -v0;
|
||||
tproj(2,2) = N+F; tproj(2,3) = N*F;
|
||||
tproj(3,2) = -1.0;
|
||||
GLFWwindow* window;
|
||||
std::unique_ptr<Shader> shader;
|
||||
std::unique_ptr<Shader> optic_flow_shader;
|
||||
std::unique_ptr<Model> our_model;
|
||||
std::vector<std::unique_ptr<Model>> dynamic_objects_model;
|
||||
|
||||
// resulting OpenGL frustum is the product of the orthographic
|
||||
// mapping to normalized device coordinates and the augmented
|
||||
// camera intrinsic matrix
|
||||
frustum = ortho*tproj;
|
||||
}
|
||||
bool is_initialized_;
|
||||
|
||||
GLFWwindow* window;
|
||||
std::unique_ptr<Shader> shader;
|
||||
std::unique_ptr<Shader> optic_flow_shader;
|
||||
std::unique_ptr<Model> our_model;
|
||||
std::vector<std::unique_ptr<Model>> dynamic_objects_model;
|
||||
unsigned int width_;
|
||||
unsigned int height_;
|
||||
|
||||
bool is_initialized_;
|
||||
unsigned int texture1;
|
||||
unsigned int texture2;
|
||||
|
||||
unsigned int width_;
|
||||
unsigned int height_;
|
||||
unsigned int VBO, VAO;
|
||||
unsigned int multisampled_fbo, multisampled_color_buf,
|
||||
multisampled_depth_buf;
|
||||
unsigned int fbo, color_buf, depth_buf,
|
||||
depth_buf_of; // framebuffer for color and depth images
|
||||
unsigned int fbo_of, of_buf; // framebuffer for optic flow
|
||||
|
||||
unsigned int texture1;
|
||||
unsigned int texture2;
|
||||
|
||||
unsigned int VBO, VAO;
|
||||
unsigned int multisampled_fbo, multisampled_color_buf, multisampled_depth_buf;
|
||||
unsigned int fbo, color_buf, depth_buf, depth_buf_of; // framebuffer for color and depth images
|
||||
unsigned int fbo_of, of_buf; // framebuffer for optic flow
|
||||
|
||||
float zmin = 0.1f;
|
||||
float zmax = 10.0f;
|
||||
};
|
||||
float zmin = 0.1f;
|
||||
float zmax = 10.0f;
|
||||
};
|
||||
|
||||
} // namespace event_camera_simulator
|
||||
|
File diff suppressed because it is too large
Load Diff
@ -4,48 +4,60 @@
|
||||
|
||||
namespace event_camera_simulator {
|
||||
|
||||
//! A rendering engine for planar scenes
|
||||
class PanoramaRenderer : public Renderer
|
||||
{
|
||||
public:
|
||||
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
|
||||
//! A rendering engine for planar scenes
|
||||
class PanoramaRenderer : public Renderer {
|
||||
public:
|
||||
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
|
||||
|
||||
PanoramaRenderer(const Image& texture,
|
||||
const Transformation::Rotation& R_W_P);
|
||||
PanoramaRenderer(
|
||||
const Image& texture, const Transformation::Rotation& R_W_P
|
||||
);
|
||||
|
||||
~PanoramaRenderer();
|
||||
~PanoramaRenderer();
|
||||
|
||||
//! Render image and depth map for a given camera pose
|
||||
virtual void render(const Transformation& T_W_C, const ImagePtr &out_image, const DepthmapPtr &out_depthmap) const;
|
||||
//! Render image and depth map for a given camera pose
|
||||
virtual void render(
|
||||
const Transformation& T_W_C,
|
||||
const ImagePtr& out_image,
|
||||
const DepthmapPtr& out_depthmap
|
||||
) const;
|
||||
|
||||
void render(const Transformation& T_W_C, const std::vector<Transformation>& T_W_OBJ, const ImagePtr &out_image, const DepthmapPtr &out_depthmap) const override
|
||||
{
|
||||
render(T_W_C, out_image, out_depthmap);
|
||||
}
|
||||
void render(
|
||||
const Transformation& T_W_C,
|
||||
const std::vector<Transformation>& T_W_OBJ,
|
||||
const ImagePtr& out_image,
|
||||
const DepthmapPtr& out_depthmap
|
||||
) const override {
|
||||
render(T_W_C, out_image, out_depthmap);
|
||||
}
|
||||
|
||||
//! Returns true if the rendering engine can compute optic flow, false otherwise
|
||||
virtual bool canComputeOpticFlow() const override { return false; }
|
||||
//! Returns true if the rendering engine can compute optic flow, false
|
||||
//! otherwise
|
||||
virtual bool canComputeOpticFlow() const override {
|
||||
return false;
|
||||
}
|
||||
|
||||
virtual void setCamera(const ze::Camera::Ptr& camera) override;
|
||||
virtual void setCamera(const ze::Camera::Ptr& camera) override;
|
||||
|
||||
protected:
|
||||
protected:
|
||||
void precomputePixelToBearingLookupTable();
|
||||
void projectToPanorama(
|
||||
const Eigen::Ref<const ze::Bearing>& f, ze::Keypoint* keypoint
|
||||
) const;
|
||||
|
||||
void precomputePixelToBearingLookupTable();
|
||||
void projectToPanorama(const Eigen::Ref<const ze::Bearing>& f, ze::Keypoint* keypoint) const;
|
||||
// Texture mapped on the plane
|
||||
Image texture_;
|
||||
Transformation::Rotation R_W_P_;
|
||||
|
||||
// Texture mapped on the plane
|
||||
Image texture_;
|
||||
Transformation::Rotation R_W_P_;
|
||||
// Intrinsic parameters of the panorama camera
|
||||
FloatType fx_, fy_;
|
||||
ze::Keypoint principal_point_;
|
||||
|
||||
// Intrinsic parameters of the panorama camera
|
||||
FloatType fx_, fy_;
|
||||
ze::Keypoint principal_point_;
|
||||
// Precomputed lookup table from keypoint -> bearing vector
|
||||
ze::Bearings bearings_C_;
|
||||
|
||||
// Precomputed lookup table from keypoint -> bearing vector
|
||||
ze::Bearings bearings_C_;
|
||||
|
||||
// Preallocated warping matrices
|
||||
mutable cv::Mat_<float> map_x_, map_y_;
|
||||
};
|
||||
// Preallocated warping matrices
|
||||
mutable cv::Mat_<float> map_x_, map_y_;
|
||||
};
|
||||
|
||||
} // namespace event_camera_simulator
|
||||
|
@ -1,113 +1,111 @@
|
||||
#include <esim/common/utils.hpp>
|
||||
#include <esim/imp_panorama_renderer/panorama_renderer.hpp>
|
||||
|
||||
#include <opencv2/imgproc/imgproc.hpp>
|
||||
#include <opencv2/calib3d/calib3d.hpp>
|
||||
#include <glog/logging.h>
|
||||
#include <opencv2/calib3d/calib3d.hpp>
|
||||
#include <opencv2/core/eigen.hpp>
|
||||
#include <opencv2/imgproc/imgproc.hpp>
|
||||
|
||||
namespace event_camera_simulator {
|
||||
|
||||
PanoramaRenderer::PanoramaRenderer(const Image& texture,
|
||||
const Transformation::Rotation &R_W_P)
|
||||
: texture_(texture),
|
||||
R_W_P_(R_W_P)
|
||||
{
|
||||
principal_point_ = ze::Keypoint(0.5 * texture_.cols,
|
||||
0.5 * texture_.rows);
|
||||
fx_ = texture_.cols / (2.0 * CV_PI);
|
||||
fy_ = texture_.rows / CV_PI;
|
||||
LOG(INFO) << "Initialized panoramic camera with size: "
|
||||
<< texture_.cols << "x" << texture_.rows
|
||||
<< ", principal point: " << principal_point_.transpose()
|
||||
<< ", fx = " << fx_ << "px , fy = " << fy_ << " px";
|
||||
}
|
||||
|
||||
PanoramaRenderer::~PanoramaRenderer()
|
||||
{
|
||||
}
|
||||
|
||||
void PanoramaRenderer::setCamera(const ze::Camera::Ptr& camera)
|
||||
{
|
||||
CHECK(camera);
|
||||
camera_ = camera;
|
||||
|
||||
precomputePixelToBearingLookupTable();
|
||||
|
||||
// Preallocate memory for the warping maps
|
||||
cv::Size sensor_size(camera->width(), camera->height());
|
||||
map_x_ = cv::Mat_<float>::zeros(sensor_size);
|
||||
map_y_ = cv::Mat_<float>::zeros(sensor_size);
|
||||
}
|
||||
|
||||
|
||||
void PanoramaRenderer::precomputePixelToBearingLookupTable()
|
||||
{
|
||||
// points_C is a matrix containing the coordinates of each pixel coordinate in the image plane
|
||||
ze::Keypoints points_C(2, camera_->width() * camera_->height());
|
||||
for(int y=0; y<camera_->height(); ++y)
|
||||
{
|
||||
for(int x=0; x<camera_->width(); ++x)
|
||||
{
|
||||
points_C.col(x + camera_->width() * y) = ze::Keypoint(x,y);
|
||||
PanoramaRenderer::PanoramaRenderer(
|
||||
const Image& texture, const Transformation::Rotation& R_W_P
|
||||
)
|
||||
: texture_(texture),
|
||||
R_W_P_(R_W_P) {
|
||||
principal_point_ =
|
||||
ze::Keypoint(0.5 * texture_.cols, 0.5 * texture_.rows);
|
||||
fx_ = texture_.cols / (2.0 * CV_PI);
|
||||
fy_ = texture_.rows / CV_PI;
|
||||
LOG(INFO) << "Initialized panoramic camera with size: " << texture_.cols
|
||||
<< "x" << texture_.rows
|
||||
<< ", principal point: " << principal_point_.transpose()
|
||||
<< ", fx = " << fx_ << "px , fy = " << fy_ << " px";
|
||||
}
|
||||
}
|
||||
bearings_C_ = camera_->backProjectVectorized(points_C);
|
||||
bearings_C_.array().rowwise() /= bearings_C_.row(2).array();
|
||||
}
|
||||
|
||||
PanoramaRenderer::~PanoramaRenderer() {}
|
||||
|
||||
void PanoramaRenderer::projectToPanorama(const Eigen::Ref<const ze::Bearing>& f, ze::Keypoint* keypoint) const
|
||||
{
|
||||
CHECK(keypoint);
|
||||
static constexpr FloatType kEpsilon = 1e-10;
|
||||
void PanoramaRenderer::setCamera(const ze::Camera::Ptr& camera) {
|
||||
CHECK(camera);
|
||||
camera_ = camera;
|
||||
|
||||
const FloatType X = f[0];
|
||||
const FloatType Y = f[1];
|
||||
const FloatType Z = f[2];
|
||||
precomputePixelToBearingLookupTable();
|
||||
|
||||
const FloatType rho2 = X*X+Y*Y+Z*Z;
|
||||
const FloatType rho = std::sqrt(rho2);
|
||||
|
||||
CHECK_GE(rho, kEpsilon);
|
||||
|
||||
const FloatType phi = std::atan2(X, Z);
|
||||
const FloatType theta = std::asin(-Y/rho);
|
||||
|
||||
*keypoint = principal_point_ + ze::Keypoint(phi * fx_, -theta * fy_);
|
||||
}
|
||||
|
||||
|
||||
void PanoramaRenderer::render(const Transformation& T_W_C, const ImagePtr& out_image, const DepthmapPtr& out_depthmap) const
|
||||
{
|
||||
CHECK_EQ(out_image->rows, camera_->height());
|
||||
CHECK_EQ(out_image->cols, camera_->width());
|
||||
|
||||
const Transformation::RotationMatrix R_P_C = R_W_P_.inverse().getRotationMatrix() * T_W_C.getRotationMatrix();
|
||||
|
||||
ze::Bearings bearings_P = R_P_C * bearings_C_;
|
||||
ze::Keypoint keypoint;
|
||||
for(int y=0; y<camera_->height(); ++y)
|
||||
{
|
||||
for(int x=0; x<camera_->width(); ++x)
|
||||
{
|
||||
const ze::Bearing& f = bearings_P.col(x + camera_->width() * y);
|
||||
|
||||
// project bearing vector to panorama image
|
||||
projectToPanorama(f, &keypoint);
|
||||
|
||||
map_x_(y,x) = static_cast<float>(keypoint[0]);
|
||||
map_y_(y,x) = static_cast<float>(keypoint[1]);
|
||||
// Preallocate memory for the warping maps
|
||||
cv::Size sensor_size(camera->width(), camera->height());
|
||||
map_x_ = cv::Mat_<float>::zeros(sensor_size);
|
||||
map_y_ = cv::Mat_<float>::zeros(sensor_size);
|
||||
}
|
||||
}
|
||||
|
||||
cv::remap(texture_, *out_image, map_x_, map_y_, cv::INTER_LINEAR, cv::BORDER_REFLECT_101);
|
||||
void PanoramaRenderer::precomputePixelToBearingLookupTable() {
|
||||
// points_C is a matrix containing the coordinates of each pixel
|
||||
// coordinate in the image plane
|
||||
ze::Keypoints points_C(2, camera_->width() * camera_->height());
|
||||
for (int y = 0; y < camera_->height(); ++y)
|
||||
for (int x = 0; x < camera_->width(); ++x)
|
||||
points_C.col(x + camera_->width() * y) = ze::Keypoint(x, y);
|
||||
bearings_C_ = camera_->backProjectVectorized(points_C);
|
||||
bearings_C_.array().rowwise() /= bearings_C_.row(2).array();
|
||||
}
|
||||
|
||||
if(out_depthmap)
|
||||
{
|
||||
static constexpr ImageFloatType infinity = 1e10;
|
||||
out_depthmap->setTo(infinity);
|
||||
}
|
||||
}
|
||||
void PanoramaRenderer::projectToPanorama(
|
||||
const Eigen::Ref<const ze::Bearing>& f, ze::Keypoint* keypoint
|
||||
) const {
|
||||
CHECK(keypoint);
|
||||
static constexpr FloatType kEpsilon = 1e-10;
|
||||
|
||||
const FloatType X = f[0];
|
||||
const FloatType Y = f[1];
|
||||
const FloatType Z = f[2];
|
||||
|
||||
const FloatType rho2 = X * X + Y * Y + Z * Z;
|
||||
const FloatType rho = std::sqrt(rho2);
|
||||
|
||||
CHECK_GE(rho, kEpsilon);
|
||||
|
||||
const FloatType phi = std::atan2(X, Z);
|
||||
const FloatType theta = std::asin(-Y / rho);
|
||||
|
||||
*keypoint = principal_point_ + ze::Keypoint(phi * fx_, -theta * fy_);
|
||||
}
|
||||
|
||||
void PanoramaRenderer::render(
|
||||
const Transformation& T_W_C,
|
||||
const ImagePtr& out_image,
|
||||
const DepthmapPtr& out_depthmap
|
||||
) const {
|
||||
CHECK_EQ(out_image->rows, camera_->height());
|
||||
CHECK_EQ(out_image->cols, camera_->width());
|
||||
|
||||
const Transformation::RotationMatrix R_P_C =
|
||||
R_W_P_.inverse().getRotationMatrix() * T_W_C.getRotationMatrix();
|
||||
|
||||
ze::Bearings bearings_P = R_P_C * bearings_C_;
|
||||
ze::Keypoint keypoint;
|
||||
for (int y = 0; y < camera_->height(); ++y) {
|
||||
for (int x = 0; x < camera_->width(); ++x) {
|
||||
const ze::Bearing& f = bearings_P.col(x + camera_->width() * y);
|
||||
|
||||
// project bearing vector to panorama image
|
||||
projectToPanorama(f, &keypoint);
|
||||
|
||||
map_x_(y, x) = static_cast<float>(keypoint[0]);
|
||||
map_y_(y, x) = static_cast<float>(keypoint[1]);
|
||||
}
|
||||
}
|
||||
|
||||
cv::remap(
|
||||
texture_,
|
||||
*out_image,
|
||||
map_x_,
|
||||
map_y_,
|
||||
cv::INTER_LINEAR,
|
||||
cv::BORDER_REFLECT_101
|
||||
);
|
||||
|
||||
if (out_depthmap) {
|
||||
static constexpr ImageFloatType infinity = 1e10;
|
||||
out_depthmap->setTo(infinity);
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace event_camera_simulator
|
||||
|
@ -4,40 +4,45 @@
|
||||
|
||||
namespace event_camera_simulator {
|
||||
|
||||
//! A rendering engine for planar scenes
|
||||
class PanoramaRenderer : public Renderer
|
||||
{
|
||||
public:
|
||||
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
|
||||
//! A rendering engine for planar scenes
|
||||
class PanoramaRenderer : public Renderer {
|
||||
public:
|
||||
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
|
||||
|
||||
PanoramaRenderer(const Image& texture,
|
||||
const Transformation::Rotation& R_W_P);
|
||||
PanoramaRenderer(
|
||||
const Image& texture, const Transformation::Rotation& R_W_P
|
||||
);
|
||||
|
||||
~PanoramaRenderer();
|
||||
~PanoramaRenderer();
|
||||
|
||||
//! Render image and depth map for a given camera pose
|
||||
virtual void render(const Transformation& T_W_C, const ImagePtr &out_image, const DepthmapPtr &out_depthmap) const override;
|
||||
//! Render image and depth map for a given camera pose
|
||||
virtual void render(
|
||||
const Transformation& T_W_C,
|
||||
const ImagePtr& out_image,
|
||||
const DepthmapPtr& out_depthmap
|
||||
) const override;
|
||||
|
||||
virtual void setCamera(const ze::Camera::Ptr& camera) override;
|
||||
virtual void setCamera(const ze::Camera::Ptr& camera) override;
|
||||
|
||||
protected:
|
||||
protected:
|
||||
void precomputePixelToBearingLookupTable();
|
||||
void projectToPanorama(
|
||||
const Eigen::Ref<const ze::Bearing>& f, ze::Keypoint* keypoint
|
||||
) const;
|
||||
|
||||
void precomputePixelToBearingLookupTable();
|
||||
void projectToPanorama(const Eigen::Ref<const ze::Bearing>& f, ze::Keypoint* keypoint) const;
|
||||
// Texture mapped on the plane
|
||||
Image texture_;
|
||||
Transformation::Rotation R_W_P_;
|
||||
|
||||
// Texture mapped on the plane
|
||||
Image texture_;
|
||||
Transformation::Rotation R_W_P_;
|
||||
// Intrinsic parameters of the panorama camera
|
||||
FloatType fx_, fy_;
|
||||
ze::Keypoint principal_point_;
|
||||
|
||||
// Intrinsic parameters of the panorama camera
|
||||
FloatType fx_, fy_;
|
||||
ze::Keypoint principal_point_;
|
||||
// Precomputed lookup table from keypoint -> bearing vector
|
||||
ze::Bearings bearings_C_;
|
||||
|
||||
// Precomputed lookup table from keypoint -> bearing vector
|
||||
ze::Bearings bearings_C_;
|
||||
|
||||
// Preallocated warping matrices
|
||||
mutable cv::Mat_<float> map_x_, map_y_;
|
||||
};
|
||||
// Preallocated warping matrices
|
||||
mutable cv::Mat_<float> map_x_, map_y_;
|
||||
};
|
||||
|
||||
} // namespace event_camera_simulator
|
||||
|
@ -4,56 +4,68 @@
|
||||
|
||||
namespace event_camera_simulator {
|
||||
|
||||
//! A rendering engine for planar scenes
|
||||
class PlanarRenderer : public Renderer
|
||||
{
|
||||
public:
|
||||
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
|
||||
//! A rendering engine for planar scenes
|
||||
class PlanarRenderer : public Renderer {
|
||||
public:
|
||||
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
|
||||
|
||||
PlanarRenderer(const Image& texture,
|
||||
const Camera::Ptr& cam_src,
|
||||
const Transformation &T_W_P,
|
||||
FloatType z_min,
|
||||
FloatType z_max,
|
||||
bool extend_border);
|
||||
PlanarRenderer(
|
||||
const Image& texture,
|
||||
const Camera::Ptr& cam_src,
|
||||
const Transformation& T_W_P,
|
||||
FloatType z_min,
|
||||
FloatType z_max,
|
||||
bool extend_border
|
||||
);
|
||||
|
||||
~PlanarRenderer();
|
||||
~PlanarRenderer();
|
||||
|
||||
//! Render image and depth map for a given camera pose
|
||||
virtual void render(const Transformation& T_W_C, const ImagePtr &out_image, const DepthmapPtr &out_depthmap) const;
|
||||
void render(const Transformation& T_W_C, const std::vector<Transformation>& T_W_OBJ, const ImagePtr &out_image, const DepthmapPtr &out_depthmap) const override
|
||||
{
|
||||
render(T_W_C, out_image, out_depthmap);
|
||||
}
|
||||
//! Render image and depth map for a given camera pose
|
||||
virtual void render(
|
||||
const Transformation& T_W_C,
|
||||
const ImagePtr& out_image,
|
||||
const DepthmapPtr& out_depthmap
|
||||
) const;
|
||||
|
||||
//! Returns true if the rendering engine can compute optic flow, false otherwise
|
||||
virtual bool canComputeOpticFlow() const override { return false; }
|
||||
void render(
|
||||
const Transformation& T_W_C,
|
||||
const std::vector<Transformation>& T_W_OBJ,
|
||||
const ImagePtr& out_image,
|
||||
const DepthmapPtr& out_depthmap
|
||||
) const override {
|
||||
render(T_W_C, out_image, out_depthmap);
|
||||
}
|
||||
|
||||
virtual void setCamera(const ze::Camera::Ptr& camera) override;
|
||||
//! Returns true if the rendering engine can compute optic flow, false
|
||||
//! otherwise
|
||||
virtual bool canComputeOpticFlow() const override {
|
||||
return false;
|
||||
}
|
||||
|
||||
protected:
|
||||
virtual void setCamera(const ze::Camera::Ptr& camera) override;
|
||||
|
||||
void precomputePixelToBearingLookupTable();
|
||||
protected:
|
||||
void precomputePixelToBearingLookupTable();
|
||||
|
||||
// Texture mapped on the plane
|
||||
Image texture_;
|
||||
Camera::Ptr cam_src_;
|
||||
CalibrationMatrix K_src_, K_src_inv_;
|
||||
// Texture mapped on the plane
|
||||
Image texture_;
|
||||
Camera::Ptr cam_src_;
|
||||
CalibrationMatrix K_src_, K_src_inv_;
|
||||
|
||||
// Plane parameters
|
||||
Transformation T_W_P_;
|
||||
// Plane parameters
|
||||
Transformation T_W_P_;
|
||||
|
||||
// Clipping parameters
|
||||
FloatType z_min_;
|
||||
FloatType z_max_;
|
||||
// Clipping parameters
|
||||
FloatType z_min_;
|
||||
FloatType z_max_;
|
||||
|
||||
bool extend_border_;
|
||||
bool extend_border_;
|
||||
|
||||
// Precomputed lookup table from keypoint -> bearing vector
|
||||
ze::Bearings bearings_C_;
|
||||
// Precomputed lookup table from keypoint -> bearing vector
|
||||
ze::Bearings bearings_C_;
|
||||
|
||||
// Preallocated warping matrices
|
||||
mutable cv::Mat_<float> map_x_, map_y_;
|
||||
};
|
||||
// Preallocated warping matrices
|
||||
mutable cv::Mat_<float> map_x_, map_y_;
|
||||
};
|
||||
|
||||
} // namespace event_camera_simulator
|
||||
|
@ -1,42 +1,47 @@
|
||||
#pragma once
|
||||
|
||||
#include <ze/common/macros.hpp>
|
||||
#include <esim/common/types.hpp>
|
||||
#include <ze/common/macros.hpp>
|
||||
|
||||
namespace event_camera_simulator {
|
||||
|
||||
//! Represents a rendering engine that generates images (and other outputs,
|
||||
//! such as depth maps, or optical flow maps) given a scene and a camera position.
|
||||
class Renderer
|
||||
{
|
||||
public:
|
||||
ZE_POINTER_TYPEDEFS(Renderer);
|
||||
//! Represents a rendering engine that generates images (and other outputs,
|
||||
//! such as depth maps, or optical flow maps) given a scene and a camera
|
||||
//! position.
|
||||
class Renderer {
|
||||
public:
|
||||
ZE_POINTER_TYPEDEFS(Renderer);
|
||||
|
||||
Renderer() {}
|
||||
Renderer() {}
|
||||
|
||||
//! Render an image at a given pose.
|
||||
virtual void render(const Transformation& T_W_C,
|
||||
const ImagePtr& out_image,
|
||||
const DepthmapPtr& out_depthmap) const = 0;
|
||||
//! Render an image at a given pose.
|
||||
virtual void render(
|
||||
const Transformation& T_W_C,
|
||||
const ImagePtr& out_image,
|
||||
const DepthmapPtr& out_depthmap
|
||||
) const = 0;
|
||||
|
||||
//! Render an image + depth map + optic flow map at a given pose,
|
||||
//! given the camera linear and angular velocity
|
||||
virtual void render(const Transformation& T_W_C,
|
||||
const LinearVelocity& v_WC,
|
||||
const AngularVelocity& w_WC,
|
||||
const ImagePtr& out_image,
|
||||
const DepthmapPtr& out_depthmap,
|
||||
const OpticFlowPtr& optic_flow_map) const {}
|
||||
//! Render an image + depth map + optic flow map at a given pose,
|
||||
//! given the camera linear and angular velocity
|
||||
virtual void render(
|
||||
const Transformation& T_W_C,
|
||||
const LinearVelocity& v_WC,
|
||||
const AngularVelocity& w_WC,
|
||||
const ImagePtr& out_image,
|
||||
const DepthmapPtr& out_depthmap,
|
||||
const OpticFlowPtr& optic_flow_map
|
||||
) const {}
|
||||
|
||||
|
||||
//! Sets the camera
|
||||
virtual void setCamera(const ze::Camera::Ptr& camera) = 0;
|
||||
//! Sets the camera
|
||||
virtual void setCamera(const ze::Camera::Ptr& camera) = 0;
|
||||
|
||||
//! Get the camera rig
|
||||
const ze::Camera::Ptr& getCamera() const { return camera_; }
|
||||
//! Get the camera rig
|
||||
const ze::Camera::Ptr& getCamera() const {
|
||||
return camera_;
|
||||
}
|
||||
|
||||
protected:
|
||||
ze::Camera::Ptr camera_;
|
||||
};
|
||||
protected:
|
||||
ze::Camera::Ptr camera_;
|
||||
};
|
||||
|
||||
} // namespace event_camera_simulator
|
||||
|
@ -1,11 +1,11 @@
|
||||
#pragma once
|
||||
|
||||
#include <gflags/gflags.h>
|
||||
#include <esim/rendering/renderer_base.hpp>
|
||||
#include <gflags/gflags.h>
|
||||
|
||||
namespace event_camera_simulator {
|
||||
|
||||
bool loadPreprocessedImage(const std::string& path_to_img, cv::Mat *img);
|
||||
Renderer::Ptr loadRendererFromGflags();
|
||||
bool loadPreprocessedImage(const std::string& path_to_img, cv::Mat* img);
|
||||
Renderer::Ptr loadRendererFromGflags();
|
||||
|
||||
} // namespace event_camera_simulator
|
||||
|
@ -1,113 +1,111 @@
|
||||
#include <esim/common/utils.hpp>
|
||||
#include <esim/rendering/panorama_renderer.hpp>
|
||||
|
||||
#include <opencv2/imgproc/imgproc.hpp>
|
||||
#include <opencv2/calib3d/calib3d.hpp>
|
||||
#include <glog/logging.h>
|
||||
#include <opencv2/calib3d/calib3d.hpp>
|
||||
#include <opencv2/core/eigen.hpp>
|
||||
#include <opencv2/imgproc/imgproc.hpp>
|
||||
|
||||
namespace event_camera_simulator {
|
||||
|
||||
PanoramaRenderer::PanoramaRenderer(const Image& texture,
|
||||
const Transformation::Rotation &R_W_P)
|
||||
: texture_(texture),
|
||||
R_W_P_(R_W_P)
|
||||
{
|
||||
principal_point_ = ze::Keypoint(0.5 * texture_.cols,
|
||||
0.5 * texture_.rows);
|
||||
fx_ = texture_.cols / (2.0 * CV_PI);
|
||||
fy_ = texture_.rows / CV_PI;
|
||||
LOG(INFO) << "Initialized panoramic camera with size: "
|
||||
<< texture_.cols << "x" << texture_.rows
|
||||
<< ", principal point: " << principal_point_.transpose()
|
||||
<< ", fx = " << fx_ << "px , fy = " << fy_ << " px";
|
||||
}
|
||||
|
||||
PanoramaRenderer::~PanoramaRenderer()
|
||||
{
|
||||
}
|
||||
|
||||
void PanoramaRenderer::setCamera(const ze::Camera::Ptr& camera)
|
||||
{
|
||||
CHECK(camera);
|
||||
camera_ = camera;
|
||||
|
||||
precomputePixelToBearingLookupTable();
|
||||
|
||||
// Preallocate memory for the warping maps
|
||||
cv::Size sensor_size(camera->width(), camera->height());
|
||||
map_x_ = cv::Mat_<float>::zeros(sensor_size);
|
||||
map_y_ = cv::Mat_<float>::zeros(sensor_size);
|
||||
}
|
||||
|
||||
|
||||
void PanoramaRenderer::precomputePixelToBearingLookupTable()
|
||||
{
|
||||
// points_C is a matrix containing the coordinates of each pixel coordinate in the image plane
|
||||
ze::Keypoints points_C(2, camera_->width() * camera_->height());
|
||||
for(int y=0; y<camera_->height(); ++y)
|
||||
{
|
||||
for(int x=0; x<camera_->width(); ++x)
|
||||
{
|
||||
points_C.col(x + camera_->width() * y) = ze::Keypoint(x,y);
|
||||
PanoramaRenderer::PanoramaRenderer(
|
||||
const Image& texture, const Transformation::Rotation& R_W_P
|
||||
)
|
||||
: texture_(texture),
|
||||
R_W_P_(R_W_P) {
|
||||
principal_point_ =
|
||||
ze::Keypoint(0.5 * texture_.cols, 0.5 * texture_.rows);
|
||||
fx_ = texture_.cols / (2.0 * CV_PI);
|
||||
fy_ = texture_.rows / CV_PI;
|
||||
LOG(INFO) << "Initialized panoramic camera with size: " << texture_.cols
|
||||
<< "x" << texture_.rows
|
||||
<< ", principal point: " << principal_point_.transpose()
|
||||
<< ", fx = " << fx_ << "px , fy = " << fy_ << " px";
|
||||
}
|
||||
}
|
||||
bearings_C_ = camera_->backProjectVectorized(points_C);
|
||||
bearings_C_.array().rowwise() /= bearings_C_.row(2).array();
|
||||
}
|
||||
|
||||
PanoramaRenderer::~PanoramaRenderer() {}
|
||||
|
||||
void PanoramaRenderer::projectToPanorama(const Eigen::Ref<const ze::Bearing>& f, ze::Keypoint* keypoint) const
|
||||
{
|
||||
CHECK(keypoint);
|
||||
static constexpr FloatType kEpsilon = 1e-10;
|
||||
void PanoramaRenderer::setCamera(const ze::Camera::Ptr& camera) {
|
||||
CHECK(camera);
|
||||
camera_ = camera;
|
||||
|
||||
const FloatType X = f[0];
|
||||
const FloatType Y = f[1];
|
||||
const FloatType Z = f[2];
|
||||
precomputePixelToBearingLookupTable();
|
||||
|
||||
const FloatType rho2 = X*X+Y*Y+Z*Z;
|
||||
const FloatType rho = std::sqrt(rho2);
|
||||
|
||||
CHECK_GE(rho, kEpsilon);
|
||||
|
||||
const FloatType phi = std::atan2(X, Z);
|
||||
const FloatType theta = std::asin(-Y/rho);
|
||||
|
||||
*keypoint = principal_point_ + ze::Keypoint(phi * fx_, -theta * fy_);
|
||||
}
|
||||
|
||||
|
||||
void PanoramaRenderer::render(const Transformation& T_W_C, const ImagePtr& out_image, const DepthmapPtr& out_depthmap) const
|
||||
{
|
||||
CHECK_EQ(out_image->rows, camera_->height());
|
||||
CHECK_EQ(out_image->cols, camera_->width());
|
||||
|
||||
const Transformation::RotationMatrix R_P_C = R_W_P_.inverse().getRotationMatrix() * T_W_C.getRotationMatrix();
|
||||
|
||||
ze::Bearings bearings_P = R_P_C * bearings_C_;
|
||||
ze::Keypoint keypoint;
|
||||
for(int y=0; y<camera_->height(); ++y)
|
||||
{
|
||||
for(int x=0; x<camera_->width(); ++x)
|
||||
{
|
||||
const ze::Bearing& f = bearings_P.col(x + camera_->width() * y);
|
||||
|
||||
// project bearing vector to panorama image
|
||||
projectToPanorama(f, &keypoint);
|
||||
|
||||
map_x_(y,x) = static_cast<float>(keypoint[0]);
|
||||
map_y_(y,x) = static_cast<float>(keypoint[1]);
|
||||
// Preallocate memory for the warping maps
|
||||
cv::Size sensor_size(camera->width(), camera->height());
|
||||
map_x_ = cv::Mat_<float>::zeros(sensor_size);
|
||||
map_y_ = cv::Mat_<float>::zeros(sensor_size);
|
||||
}
|
||||
}
|
||||
|
||||
cv::remap(texture_, *out_image, map_x_, map_y_, CV_INTER_LINEAR, cv::BORDER_REFLECT_101);
|
||||
void PanoramaRenderer::precomputePixelToBearingLookupTable() {
|
||||
// points_C is a matrix containing the coordinates of each pixel
|
||||
// coordinate in the image plane
|
||||
ze::Keypoints points_C(2, camera_->width() * camera_->height());
|
||||
for (int y = 0; y < camera_->height(); ++y)
|
||||
for (int x = 0; x < camera_->width(); ++x)
|
||||
points_C.col(x + camera_->width() * y) = ze::Keypoint(x, y);
|
||||
bearings_C_ = camera_->backProjectVectorized(points_C);
|
||||
bearings_C_.array().rowwise() /= bearings_C_.row(2).array();
|
||||
}
|
||||
|
||||
if(out_depthmap)
|
||||
{
|
||||
static constexpr ImageFloatType infinity = 1e10;
|
||||
out_depthmap->setTo(infinity);
|
||||
}
|
||||
}
|
||||
void PanoramaRenderer::projectToPanorama(
|
||||
const Eigen::Ref<const ze::Bearing>& f, ze::Keypoint* keypoint
|
||||
) const {
|
||||
CHECK(keypoint);
|
||||
static constexpr FloatType kEpsilon = 1e-10;
|
||||
|
||||
const FloatType X = f[0];
|
||||
const FloatType Y = f[1];
|
||||
const FloatType Z = f[2];
|
||||
|
||||
const FloatType rho2 = X * X + Y * Y + Z * Z;
|
||||
const FloatType rho = std::sqrt(rho2);
|
||||
|
||||
CHECK_GE(rho, kEpsilon);
|
||||
|
||||
const FloatType phi = std::atan2(X, Z);
|
||||
const FloatType theta = std::asin(-Y / rho);
|
||||
|
||||
*keypoint = principal_point_ + ze::Keypoint(phi * fx_, -theta * fy_);
|
||||
}
|
||||
|
||||
void PanoramaRenderer::render(
|
||||
const Transformation& T_W_C,
|
||||
const ImagePtr& out_image,
|
||||
const DepthmapPtr& out_depthmap
|
||||
) const {
|
||||
CHECK_EQ(out_image->rows, camera_->height());
|
||||
CHECK_EQ(out_image->cols, camera_->width());
|
||||
|
||||
const Transformation::RotationMatrix R_P_C =
|
||||
R_W_P_.inverse().getRotationMatrix() * T_W_C.getRotationMatrix();
|
||||
|
||||
ze::Bearings bearings_P = R_P_C * bearings_C_;
|
||||
ze::Keypoint keypoint;
|
||||
for (int y = 0; y < camera_->height(); ++y) {
|
||||
for (int x = 0; x < camera_->width(); ++x) {
|
||||
const ze::Bearing& f = bearings_P.col(x + camera_->width() * y);
|
||||
|
||||
// project bearing vector to panorama image
|
||||
projectToPanorama(f, &keypoint);
|
||||
|
||||
map_x_(y, x) = static_cast<float>(keypoint[0]);
|
||||
map_y_(y, x) = static_cast<float>(keypoint[1]);
|
||||
}
|
||||
}
|
||||
|
||||
cv::remap(
|
||||
texture_,
|
||||
*out_image,
|
||||
map_x_,
|
||||
map_y_,
|
||||
CV_INTER_LINEAR,
|
||||
cv::BORDER_REFLECT_101
|
||||
);
|
||||
|
||||
if (out_depthmap) {
|
||||
static constexpr ImageFloatType infinity = 1e10;
|
||||
out_depthmap->setTo(infinity);
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace event_camera_simulator
|
||||
|
@ -1,146 +1,158 @@
|
||||
#include <esim/common/utils.hpp>
|
||||
#include <esim/imp_planar_renderer/planar_renderer.hpp>
|
||||
|
||||
#include <opencv2/imgproc/imgproc.hpp>
|
||||
#include <opencv2/calib3d/calib3d.hpp>
|
||||
#include <glog/logging.h>
|
||||
#include <opencv2/calib3d/calib3d.hpp>
|
||||
#include <opencv2/core/eigen.hpp>
|
||||
#include <opencv2/imgproc/imgproc.hpp>
|
||||
#include <ze/common/timer_collection.hpp>
|
||||
|
||||
DECLARE_TIMER(TimerPlanarRenderer, timers_planar_renderer,
|
||||
compute_remap_maps,
|
||||
inverse_homography,
|
||||
remap,
|
||||
compute_depthmap
|
||||
);
|
||||
DECLARE_TIMER(
|
||||
TimerPlanarRenderer,
|
||||
timers_planar_renderer,
|
||||
compute_remap_maps,
|
||||
inverse_homography,
|
||||
remap,
|
||||
compute_depthmap
|
||||
);
|
||||
|
||||
namespace event_camera_simulator {
|
||||
|
||||
PlanarRenderer::PlanarRenderer(const Image& texture,
|
||||
const Camera::Ptr &cam_src,
|
||||
const Transformation& T_W_P,
|
||||
FloatType z_min,
|
||||
FloatType z_max,
|
||||
bool extend_border)
|
||||
: texture_(texture),
|
||||
cam_src_(cam_src),
|
||||
T_W_P_(T_W_P),
|
||||
z_min_(z_min),
|
||||
z_max_(z_max),
|
||||
extend_border_(extend_border)
|
||||
{
|
||||
K_src_ = calibrationMatrixFromCamera(cam_src_);
|
||||
K_src_inv_ = K_src_.inverse();
|
||||
VLOG(1) << "K_src = " << K_src_;
|
||||
PlanarRenderer::PlanarRenderer(
|
||||
const Image& texture,
|
||||
const Camera::Ptr& cam_src,
|
||||
const Transformation& T_W_P,
|
||||
FloatType z_min,
|
||||
FloatType z_max,
|
||||
bool extend_border
|
||||
)
|
||||
: texture_(texture),
|
||||
cam_src_(cam_src),
|
||||
T_W_P_(T_W_P),
|
||||
z_min_(z_min),
|
||||
z_max_(z_max),
|
||||
extend_border_(extend_border) {
|
||||
K_src_ = calibrationMatrixFromCamera(cam_src_);
|
||||
K_src_inv_ = K_src_.inverse();
|
||||
VLOG(1) << "K_src = " << K_src_;
|
||||
|
||||
LOG(INFO) << "T_W_P = " << T_W_P_;
|
||||
}
|
||||
|
||||
PlanarRenderer::~PlanarRenderer()
|
||||
{
|
||||
timers_planar_renderer.saveToFile("/tmp", "planar_renderer.csv");
|
||||
}
|
||||
|
||||
void PlanarRenderer::setCamera(const ze::Camera::Ptr& camera)
|
||||
{
|
||||
CHECK(camera);
|
||||
camera_ = camera;
|
||||
|
||||
precomputePixelToBearingLookupTable();
|
||||
|
||||
// Preallocate memory for the warping maps
|
||||
cv::Size sensor_size(camera->width(), camera->height());
|
||||
map_x_ = cv::Mat_<float>::zeros(sensor_size);
|
||||
map_y_ = cv::Mat_<float>::zeros(sensor_size);
|
||||
}
|
||||
|
||||
|
||||
void PlanarRenderer::precomputePixelToBearingLookupTable()
|
||||
{
|
||||
// points_C is a matrix containing the coordinates of each pixel coordinate in the image plane
|
||||
ze::Keypoints points_C(2, camera_->width() * camera_->height());
|
||||
for(int y=0; y<camera_->height(); ++y)
|
||||
{
|
||||
for(int x=0; x<camera_->width(); ++x)
|
||||
{
|
||||
points_C.col(x + camera_->width() * y) = ze::Keypoint(x,y);
|
||||
LOG(INFO) << "T_W_P = " << T_W_P_;
|
||||
}
|
||||
}
|
||||
bearings_C_ = camera_->backProjectVectorized(points_C);
|
||||
bearings_C_.array().rowwise() /= bearings_C_.row(2).array();
|
||||
}
|
||||
|
||||
void PlanarRenderer::render(const Transformation& T_W_C, const ImagePtr& out_image, const DepthmapPtr& out_depthmap) const
|
||||
{
|
||||
CHECK_EQ(out_image->rows, camera_->height());
|
||||
CHECK_EQ(out_image->cols, camera_->width());
|
||||
|
||||
const Transformation T_C_W = T_W_C.inverse();
|
||||
const Transformation T_C_P = T_C_W * T_W_P_;
|
||||
const Transformation T_P_C = T_C_P.inverse();
|
||||
|
||||
ze::Matrix33 tmp;
|
||||
tmp.col(0) = T_C_P.getRotationMatrix().col(0);
|
||||
tmp.col(1) = T_C_P.getRotationMatrix().col(1);
|
||||
tmp.col(2) = T_C_P.getPosition();
|
||||
|
||||
VLOG_EVERY_N(3, 100) << "T_C_P = " << T_C_P;
|
||||
VLOG_EVERY_N(3, 100) << "tmp = " << tmp;
|
||||
HomographyMatrix H_C_P = tmp;
|
||||
|
||||
HomographyMatrix H_P_C;
|
||||
{
|
||||
auto t = timers_planar_renderer[TimerPlanarRenderer::inverse_homography].timeScope();
|
||||
H_P_C = H_C_P.inverse();
|
||||
}
|
||||
|
||||
{
|
||||
auto t = timers_planar_renderer[TimerPlanarRenderer::compute_remap_maps].timeScope();
|
||||
ze::Bearings bearings_P = H_P_C * bearings_C_;
|
||||
for(int y=0; y<camera_->height(); ++y)
|
||||
{
|
||||
for(int x=0; x<camera_->width(); ++x)
|
||||
{
|
||||
const ze::Bearing& f = bearings_P.col(x + camera_->width() * y);
|
||||
map_x_(y,x) = static_cast<float>(K_src_(0,0) * f[0]/f[2] + K_src_(0,2));
|
||||
map_y_(y,x) = static_cast<float>(K_src_(1,1) * f[1]/f[2] + K_src_(1,2));
|
||||
}
|
||||
PlanarRenderer::~PlanarRenderer() {
|
||||
timers_planar_renderer.saveToFile("/tmp", "planar_renderer.csv");
|
||||
}
|
||||
}
|
||||
|
||||
int border = (extend_border_) ? cv::BORDER_REFLECT : cv::BORDER_CONSTANT;
|
||||
{
|
||||
auto t = timers_planar_renderer[TimerPlanarRenderer::remap].timeScope();
|
||||
cv::remap(texture_, *out_image, map_x_, map_y_, cv::INTER_LINEAR, border, 0.8);
|
||||
}
|
||||
void PlanarRenderer::setCamera(const ze::Camera::Ptr& camera) {
|
||||
CHECK(camera);
|
||||
camera_ = camera;
|
||||
|
||||
// Compute depth map in dst
|
||||
{
|
||||
auto t = timers_planar_renderer[TimerPlanarRenderer::compute_depthmap].timeScope();
|
||||
Vector3 X;
|
||||
for(int y=0; y<camera_->height(); ++y)
|
||||
{
|
||||
for(int x=0; x<camera_->width(); ++x)
|
||||
{
|
||||
X = bearings_C_.col(x + camera_->width() * y);
|
||||
// @TODO: derive this formula for the depth to explain it
|
||||
const FloatType numer = -T_P_C.getPosition()[2];
|
||||
const FloatType denom = T_P_C.getRotationMatrix().row(2) * X;
|
||||
const FloatType z = numer / denom;
|
||||
precomputePixelToBearingLookupTable();
|
||||
|
||||
if(out_depthmap)
|
||||
// Preallocate memory for the warping maps
|
||||
cv::Size sensor_size(camera->width(), camera->height());
|
||||
map_x_ = cv::Mat_<float>::zeros(sensor_size);
|
||||
map_y_ = cv::Mat_<float>::zeros(sensor_size);
|
||||
}
|
||||
|
||||
void PlanarRenderer::precomputePixelToBearingLookupTable() {
|
||||
// points_C is a matrix containing the coordinates of each pixel
|
||||
// coordinate in the image plane
|
||||
ze::Keypoints points_C(2, camera_->width() * camera_->height());
|
||||
for (int y = 0; y < camera_->height(); ++y)
|
||||
for (int x = 0; x < camera_->width(); ++x)
|
||||
points_C.col(x + camera_->width() * y) = ze::Keypoint(x, y);
|
||||
bearings_C_ = camera_->backProjectVectorized(points_C);
|
||||
bearings_C_.array().rowwise() /= bearings_C_.row(2).array();
|
||||
}
|
||||
|
||||
void PlanarRenderer::render(
|
||||
const Transformation& T_W_C,
|
||||
const ImagePtr& out_image,
|
||||
const DepthmapPtr& out_depthmap
|
||||
) const {
|
||||
CHECK_EQ(out_image->rows, camera_->height());
|
||||
CHECK_EQ(out_image->cols, camera_->width());
|
||||
|
||||
const Transformation T_C_W = T_W_C.inverse();
|
||||
const Transformation T_C_P = T_C_W * T_W_P_;
|
||||
const Transformation T_P_C = T_C_P.inverse();
|
||||
|
||||
ze::Matrix33 tmp;
|
||||
tmp.col(0) = T_C_P.getRotationMatrix().col(0);
|
||||
tmp.col(1) = T_C_P.getRotationMatrix().col(1);
|
||||
tmp.col(2) = T_C_P.getPosition();
|
||||
|
||||
VLOG_EVERY_N(3, 100) << "T_C_P = " << T_C_P;
|
||||
VLOG_EVERY_N(3, 100) << "tmp = " << tmp;
|
||||
HomographyMatrix H_C_P = tmp;
|
||||
|
||||
HomographyMatrix H_P_C;
|
||||
{
|
||||
(*out_depthmap)(y,x) = (ImageFloatType) z;
|
||||
auto t =
|
||||
timers_planar_renderer[TimerPlanarRenderer::inverse_homography]
|
||||
.timeScope();
|
||||
H_P_C = H_C_P.inverse();
|
||||
}
|
||||
|
||||
// clip depth to a reasonable depth range
|
||||
if(z < z_min_ || z > z_max_)
|
||||
{
|
||||
(*out_image)(y,x) = 0;
|
||||
auto t =
|
||||
timers_planar_renderer[TimerPlanarRenderer::compute_remap_maps]
|
||||
.timeScope();
|
||||
ze::Bearings bearings_P = H_P_C * bearings_C_;
|
||||
for (int y = 0; y < camera_->height(); ++y) {
|
||||
for (int x = 0; x < camera_->width(); ++x) {
|
||||
const ze::Bearing& f =
|
||||
bearings_P.col(x + camera_->width() * y);
|
||||
map_x_(y, x) = static_cast<float>(
|
||||
K_src_(0, 0) * f[0] / f[2] + K_src_(0, 2)
|
||||
);
|
||||
map_y_(y, x) = static_cast<float>(
|
||||
K_src_(1, 1) * f[1] / f[2] + K_src_(1, 2)
|
||||
);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
int border =
|
||||
(extend_border_) ? cv::BORDER_REFLECT : cv::BORDER_CONSTANT;
|
||||
{
|
||||
auto t =
|
||||
timers_planar_renderer[TimerPlanarRenderer::remap].timeScope();
|
||||
cv::remap(
|
||||
texture_,
|
||||
*out_image,
|
||||
map_x_,
|
||||
map_y_,
|
||||
cv::INTER_LINEAR,
|
||||
border,
|
||||
0.8
|
||||
);
|
||||
}
|
||||
|
||||
// Compute depth map in dst
|
||||
{
|
||||
auto t =
|
||||
timers_planar_renderer[TimerPlanarRenderer::compute_depthmap]
|
||||
.timeScope();
|
||||
Vector3 X;
|
||||
for (int y = 0; y < camera_->height(); ++y) {
|
||||
for (int x = 0; x < camera_->width(); ++x) {
|
||||
X = bearings_C_.col(x + camera_->width() * y);
|
||||
// @TODO: derive this formula for the depth to explain it
|
||||
const FloatType numer = -T_P_C.getPosition()[2];
|
||||
const FloatType denom =
|
||||
T_P_C.getRotationMatrix().row(2) * X;
|
||||
const FloatType z = numer / denom;
|
||||
|
||||
if (out_depthmap)
|
||||
(*out_depthmap)(y, x) = (ImageFloatType) z;
|
||||
|
||||
// clip depth to a reasonable depth range
|
||||
if (z < z_min_ || z > z_max_)
|
||||
(*out_image)(y, x) = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace event_camera_simulator
|
||||
|
@ -1,5 +1,3 @@
|
||||
#include <esim/rendering/renderer_base.hpp>
|
||||
|
||||
namespace event_camera_simulator {
|
||||
|
||||
} // namespace event_camera_simulator
|
||||
namespace event_camera_simulator {} // namespace event_camera_simulator
|
||||
|
@ -1,164 +1,235 @@
|
||||
#include <esim/common/utils.hpp>
|
||||
#include <esim/rendering/renderer_factory.hpp>
|
||||
#include <esim/rendering/planar_renderer.hpp>
|
||||
#include <esim/rendering/panorama_renderer.hpp>
|
||||
#include <ze/cameras/camera_models.hpp>
|
||||
#include <ze/cameras/camera_impl.hpp>
|
||||
#include <ze/common/logging.hpp>
|
||||
#include <esim/rendering/planar_renderer.hpp>
|
||||
#include <esim/rendering/renderer_factory.hpp>
|
||||
#include <opencv2/imgcodecs/imgcodecs.hpp>
|
||||
#include <opencv2/imgproc/imgproc.hpp>
|
||||
#include <ze/cameras/camera_impl.hpp>
|
||||
#include <ze/cameras/camera_models.hpp>
|
||||
#include <ze/common/logging.hpp>
|
||||
|
||||
DEFINE_int32(renderer_type, 0, " 0: Planar renderer");
|
||||
|
||||
DEFINE_string(renderer_texture, "",
|
||||
"Path to image which will be used to texture the plane");
|
||||
DEFINE_string(
|
||||
renderer_texture,
|
||||
"",
|
||||
"Path to image which will be used to texture the plane"
|
||||
);
|
||||
|
||||
DEFINE_double(renderer_hfov_cam_source_deg, 130.0,
|
||||
"Horizontal FoV of the source camera (that captured the image on the plane)");
|
||||
DEFINE_double(
|
||||
renderer_hfov_cam_source_deg,
|
||||
130.0,
|
||||
"Horizontal FoV of the source camera (that captured the image on "
|
||||
"the plane)"
|
||||
);
|
||||
|
||||
DEFINE_double(renderer_preprocess_median_blur, 0,
|
||||
"Kernel size of the preprocessing median blur.");
|
||||
DEFINE_double(
|
||||
renderer_preprocess_median_blur,
|
||||
0,
|
||||
"Kernel size of the preprocessing median blur."
|
||||
);
|
||||
|
||||
DEFINE_double(renderer_preprocess_gaussian_blur, 0,
|
||||
"Amount of preprocessing Gaussian blur.");
|
||||
DEFINE_double(
|
||||
renderer_preprocess_gaussian_blur,
|
||||
0,
|
||||
"Amount of preprocessing Gaussian blur."
|
||||
);
|
||||
|
||||
DEFINE_double(renderer_plane_x, 0.0,
|
||||
"x position of the center of the plane, in world coordinates");
|
||||
DEFINE_double(
|
||||
renderer_plane_x,
|
||||
0.0,
|
||||
"x position of the center of the plane, in world coordinates"
|
||||
);
|
||||
|
||||
DEFINE_double(renderer_plane_y, 0.0,
|
||||
"y position of the center of the plane, in world coordinates");
|
||||
DEFINE_double(
|
||||
renderer_plane_y,
|
||||
0.0,
|
||||
"y position of the center of the plane, in world coordinates"
|
||||
);
|
||||
|
||||
DEFINE_double(renderer_plane_z, -1.0,
|
||||
"z position of the center of the plane, in world coordinates");
|
||||
DEFINE_double(
|
||||
renderer_plane_z,
|
||||
-1.0,
|
||||
"z position of the center of the plane, in world coordinates"
|
||||
);
|
||||
|
||||
DEFINE_double(renderer_plane_qw, 0.0,
|
||||
"w component of the quaternion q_W_P (orientation of the plane with respect to the world)");
|
||||
DEFINE_double(
|
||||
renderer_plane_qw,
|
||||
0.0,
|
||||
"w component of the quaternion q_W_P (orientation of the plane "
|
||||
"with respect to the world)"
|
||||
);
|
||||
|
||||
DEFINE_double(renderer_plane_qx, 1.0,
|
||||
"x component of the quaternion q_W_P (orientation of the plane with respect to the world)");
|
||||
DEFINE_double(
|
||||
renderer_plane_qx,
|
||||
1.0,
|
||||
"x component of the quaternion q_W_P (orientation of the plane "
|
||||
"with respect to the world)"
|
||||
);
|
||||
|
||||
DEFINE_double(renderer_plane_qy, 0.0,
|
||||
"y component of the quaternion q_W_P (orientation of the plane with respect to the world)");
|
||||
DEFINE_double(
|
||||
renderer_plane_qy,
|
||||
0.0,
|
||||
"y component of the quaternion q_W_P (orientation of the plane "
|
||||
"with respect to the world)"
|
||||
);
|
||||
|
||||
DEFINE_double(renderer_plane_qz, 0.0,
|
||||
"z component of the quaternion q_W_P (orientation of the plane with respect to the world)");
|
||||
DEFINE_double(
|
||||
renderer_plane_qz,
|
||||
0.0,
|
||||
"z component of the quaternion q_W_P (orientation of the plane "
|
||||
"with respect to the world)"
|
||||
);
|
||||
|
||||
DEFINE_double(renderer_z_min, 0.01,
|
||||
"Minimum clipping distance.");
|
||||
DEFINE_double(renderer_z_min, 0.01, "Minimum clipping distance.");
|
||||
|
||||
DEFINE_double(renderer_z_max, 10.0,
|
||||
"Maximum clipping distance.");
|
||||
DEFINE_double(renderer_z_max, 10.0, "Maximum clipping distance.");
|
||||
|
||||
DEFINE_bool(renderer_extend_border, false,
|
||||
"Whether to extend the borders of the plane to infinity or not.");
|
||||
DEFINE_bool(
|
||||
renderer_extend_border,
|
||||
false,
|
||||
"Whether to extend the borders of the plane to infinity or not."
|
||||
);
|
||||
|
||||
DEFINE_double(renderer_panorama_qw, 0.0,
|
||||
"w component of the quaternion q_W_P (orientation of the panorama with respect to the world)");
|
||||
DEFINE_double(
|
||||
renderer_panorama_qw,
|
||||
0.0,
|
||||
"w component of the quaternion q_W_P (orientation of the "
|
||||
"panorama with respect to the world)"
|
||||
);
|
||||
|
||||
DEFINE_double(renderer_panorama_qx, 1.0,
|
||||
"x component of the quaternion q_W_P (orientation of the panorama with respect to the world)");
|
||||
DEFINE_double(
|
||||
renderer_panorama_qx,
|
||||
1.0,
|
||||
"x component of the quaternion q_W_P (orientation of the "
|
||||
"panorama with respect to the world)"
|
||||
);
|
||||
|
||||
DEFINE_double(renderer_panorama_qy, 0.0,
|
||||
"y component of the quaternion q_W_P (orientation of the panorama with respect to the world)");
|
||||
DEFINE_double(
|
||||
renderer_panorama_qy,
|
||||
0.0,
|
||||
"y component of the quaternion q_W_P (orientation of the "
|
||||
"panorama with respect to the world)"
|
||||
);
|
||||
|
||||
DEFINE_double(renderer_panorama_qz, 0.0,
|
||||
"z component of the quaternion q_W_P (orientation of the panorama with respect to the world)");
|
||||
DEFINE_double(
|
||||
renderer_panorama_qz,
|
||||
0.0,
|
||||
"z component of the quaternion q_W_P (orientation of the "
|
||||
"panorama with respect to the world)"
|
||||
);
|
||||
|
||||
namespace event_camera_simulator {
|
||||
|
||||
bool loadPreprocessedImage(const std::string& path_to_img, cv::Mat* img)
|
||||
{
|
||||
CHECK(img);
|
||||
VLOG(1) << "Loading texture file from file: " << FLAGS_renderer_texture << ".";
|
||||
*img = cv::imread(path_to_img, 0);
|
||||
if(!img->data)
|
||||
{
|
||||
LOG(FATAL) << "Could not open image at: " << FLAGS_renderer_texture << ".";
|
||||
return false;
|
||||
}
|
||||
bool loadPreprocessedImage(const std::string& path_to_img, cv::Mat* img) {
|
||||
CHECK(img);
|
||||
VLOG(1) << "Loading texture file from file: " << FLAGS_renderer_texture
|
||||
<< ".";
|
||||
*img = cv::imread(path_to_img, 0);
|
||||
if (!img->data) {
|
||||
LOG(FATAL) << "Could not open image at: " << FLAGS_renderer_texture
|
||||
<< ".";
|
||||
return false;
|
||||
}
|
||||
|
||||
if(FLAGS_renderer_preprocess_median_blur > 1)
|
||||
{
|
||||
VLOG(1) << "Pre-filtering the texture with median filter of size: "
|
||||
<< FLAGS_renderer_preprocess_median_blur << ".";
|
||||
cv::medianBlur(*img, *img, FLAGS_renderer_preprocess_median_blur);
|
||||
}
|
||||
if (FLAGS_renderer_preprocess_median_blur > 1) {
|
||||
VLOG(1) << "Pre-filtering the texture with median filter of size: "
|
||||
<< FLAGS_renderer_preprocess_median_blur << ".";
|
||||
cv::medianBlur(*img, *img, FLAGS_renderer_preprocess_median_blur);
|
||||
}
|
||||
|
||||
if(FLAGS_renderer_preprocess_gaussian_blur > 0)
|
||||
{
|
||||
VLOG(1) << "Pre-filtering the texture with gaussian filter of size: "
|
||||
<< FLAGS_renderer_preprocess_gaussian_blur << ".";
|
||||
cv::GaussianBlur(*img, *img, cv::Size(15,15), FLAGS_renderer_preprocess_gaussian_blur);
|
||||
}
|
||||
if (FLAGS_renderer_preprocess_gaussian_blur > 0) {
|
||||
VLOG(1
|
||||
) << "Pre-filtering the texture with gaussian filter of size: "
|
||||
<< FLAGS_renderer_preprocess_gaussian_blur << ".";
|
||||
cv::GaussianBlur(
|
||||
*img,
|
||||
*img,
|
||||
cv::Size(15, 15),
|
||||
FLAGS_renderer_preprocess_gaussian_blur
|
||||
);
|
||||
}
|
||||
|
||||
img->convertTo(*img, cv::DataType<ImageFloatType>::type, 1.0/255.0);
|
||||
img->convertTo(*img, cv::DataType<ImageFloatType>::type, 1.0 / 255.0);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
Renderer::Ptr loadRendererFromGflags()
|
||||
{
|
||||
Renderer::Ptr renderer;
|
||||
|
||||
switch (FLAGS_renderer_type)
|
||||
{
|
||||
case 0: // Planar renderer
|
||||
{
|
||||
cv::Mat img_src;
|
||||
if(!loadPreprocessedImage(FLAGS_renderer_texture, &img_src))
|
||||
{
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
double f_src = hfovToFocalLength(FLAGS_renderer_hfov_cam_source_deg, img_src.cols);
|
||||
Camera::Ptr cam_src = std::make_shared<ze::PinholeCamera>(
|
||||
img_src.cols, img_src.rows, ze::CameraType::Pinhole,
|
||||
(Vector4() << f_src, f_src, 0.5 * img_src.cols, 0.5 * img_src.rows).finished(),
|
||||
ze::VectorX());
|
||||
|
||||
Transformation T_W_P;
|
||||
T_W_P.getPosition() = ze::Position(FLAGS_renderer_plane_x,
|
||||
FLAGS_renderer_plane_y,
|
||||
FLAGS_renderer_plane_z);
|
||||
|
||||
T_W_P.getRotation() = ze::Quaternion(FLAGS_renderer_plane_qw,
|
||||
FLAGS_renderer_plane_qx,
|
||||
FLAGS_renderer_plane_qy,
|
||||
FLAGS_renderer_plane_qz);
|
||||
|
||||
renderer.reset(new PlanarRenderer(img_src, cam_src,
|
||||
T_W_P,
|
||||
FLAGS_renderer_z_min,
|
||||
FLAGS_renderer_z_max,
|
||||
FLAGS_renderer_extend_border));
|
||||
|
||||
break;
|
||||
return true;
|
||||
}
|
||||
case 1: // Panorama renderer
|
||||
{
|
||||
cv::Mat img_src;
|
||||
if(!loadPreprocessedImage(FLAGS_renderer_texture, &img_src))
|
||||
{
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
Transformation::Rotation R_W_P;
|
||||
R_W_P = ze::Quaternion(FLAGS_renderer_panorama_qw,
|
||||
FLAGS_renderer_panorama_qx,
|
||||
FLAGS_renderer_panorama_qy,
|
||||
FLAGS_renderer_panorama_qz);
|
||||
Renderer::Ptr loadRendererFromGflags() {
|
||||
Renderer::Ptr renderer;
|
||||
|
||||
renderer.reset(new PanoramaRenderer(img_src, R_W_P));
|
||||
break;
|
||||
switch (FLAGS_renderer_type) {
|
||||
case 0: // Planar renderer
|
||||
{
|
||||
cv::Mat img_src;
|
||||
if (!loadPreprocessedImage(FLAGS_renderer_texture, &img_src))
|
||||
return nullptr;
|
||||
|
||||
double f_src = hfovToFocalLength(
|
||||
FLAGS_renderer_hfov_cam_source_deg,
|
||||
img_src.cols
|
||||
);
|
||||
Camera::Ptr cam_src = std::make_shared<ze::PinholeCamera>(
|
||||
img_src.cols,
|
||||
img_src.rows,
|
||||
ze::CameraType::Pinhole,
|
||||
(Vector4() << f_src,
|
||||
f_src,
|
||||
0.5 * img_src.cols,
|
||||
0.5 * img_src.rows)
|
||||
.finished(),
|
||||
ze::VectorX()
|
||||
);
|
||||
|
||||
Transformation T_W_P;
|
||||
T_W_P.getPosition() = ze::Position(
|
||||
FLAGS_renderer_plane_x,
|
||||
FLAGS_renderer_plane_y,
|
||||
FLAGS_renderer_plane_z
|
||||
);
|
||||
|
||||
T_W_P.getRotation() = ze::Quaternion(
|
||||
FLAGS_renderer_plane_qw,
|
||||
FLAGS_renderer_plane_qx,
|
||||
FLAGS_renderer_plane_qy,
|
||||
FLAGS_renderer_plane_qz
|
||||
);
|
||||
|
||||
renderer.reset(new PlanarRenderer(
|
||||
img_src,
|
||||
cam_src,
|
||||
T_W_P,
|
||||
FLAGS_renderer_z_min,
|
||||
FLAGS_renderer_z_max,
|
||||
FLAGS_renderer_extend_border
|
||||
));
|
||||
|
||||
break;
|
||||
}
|
||||
case 1: // Panorama renderer
|
||||
{
|
||||
cv::Mat img_src;
|
||||
if (!loadPreprocessedImage(FLAGS_renderer_texture, &img_src))
|
||||
return nullptr;
|
||||
|
||||
Transformation::Rotation R_W_P;
|
||||
R_W_P = ze::Quaternion(
|
||||
FLAGS_renderer_panorama_qw,
|
||||
FLAGS_renderer_panorama_qx,
|
||||
FLAGS_renderer_panorama_qy,
|
||||
FLAGS_renderer_panorama_qz
|
||||
);
|
||||
|
||||
renderer.reset(new PanoramaRenderer(img_src, R_W_P));
|
||||
break;
|
||||
}
|
||||
default: {
|
||||
LOG(FATAL) << "Renderer type is not known.";
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
return renderer;
|
||||
}
|
||||
default:
|
||||
{
|
||||
LOG(FATAL) << "Renderer type is not known.";
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
return renderer;
|
||||
}
|
||||
|
||||
} // namespace event_camera_simulator
|
||||
|
@ -4,31 +4,39 @@
|
||||
|
||||
namespace event_camera_simulator {
|
||||
|
||||
class UnrealCvClient; // fwd
|
||||
class UnrealCvClient; // fwd
|
||||
|
||||
class UnrealCvRenderer : public Renderer
|
||||
{
|
||||
public:
|
||||
class UnrealCvRenderer : public Renderer {
|
||||
public:
|
||||
UnrealCvRenderer();
|
||||
|
||||
UnrealCvRenderer();
|
||||
//! Render image and depth map for a given camera pose
|
||||
virtual void render(
|
||||
const Transformation& T_W_C,
|
||||
const ImagePtr& out_image,
|
||||
const DepthmapPtr& out_depthmap
|
||||
) const;
|
||||
|
||||
//! Render image and depth map for a given camera pose
|
||||
virtual void render(const Transformation& T_W_C, const ImagePtr &out_image, const DepthmapPtr &out_depthmap) const;
|
||||
void render(
|
||||
const Transformation& T_W_C,
|
||||
const std::vector<Transformation>& T_W_OBJ,
|
||||
const ImagePtr& out_image,
|
||||
const DepthmapPtr& out_depthmap
|
||||
) const {
|
||||
render(T_W_C, out_image, out_depthmap);
|
||||
}
|
||||
|
||||
void render(const Transformation& T_W_C, const std::vector<Transformation>& T_W_OBJ, const ImagePtr &out_image, const DepthmapPtr &out_depthmap) const
|
||||
{
|
||||
render(T_W_C, out_image, out_depthmap);
|
||||
}
|
||||
//! Returns true if the rendering engine can compute optic flow, false
|
||||
//! otherwise
|
||||
virtual bool canComputeOpticFlow() const override {
|
||||
return false;
|
||||
}
|
||||
|
||||
//! Returns true if the rendering engine can compute optic flow, false otherwise
|
||||
virtual bool canComputeOpticFlow() const override { return false; }
|
||||
virtual void setCamera(const ze::Camera::Ptr& camera) override;
|
||||
|
||||
virtual void setCamera(const ze::Camera::Ptr& camera) override;
|
||||
private:
|
||||
std::shared_ptr<UnrealCvClient> client_;
|
||||
mutable size_t frame_idx_;
|
||||
};
|
||||
|
||||
private:
|
||||
std::shared_ptr<UnrealCvClient> client_;
|
||||
mutable size_t frame_idx_;
|
||||
};
|
||||
|
||||
|
||||
}
|
||||
} // namespace event_camera_simulator
|
||||
|
@ -4,85 +4,86 @@
|
||||
|
||||
namespace event_camera_simulator {
|
||||
|
||||
/**
|
||||
* https://github.com/EpicGames/UnrealEngine/blob/dbced2dd59f9f5dfef1d7786fd67ad2970adf95f/Engine/Source/Runtime/Core/Public/Math/Rotator.h#L580
|
||||
* Helper function for eulerFromQuatSingularityTest, angles are expected to be given in degrees
|
||||
**/
|
||||
inline FloatType clampAxis(FloatType angle)
|
||||
{
|
||||
// returns angle in the range (-360,360)
|
||||
angle = std::fmod(angle, 360.f);
|
||||
/**
|
||||
* https://github.com/EpicGames/UnrealEngine/blob/dbced2dd59f9f5dfef1d7786fd67ad2970adf95f/Engine/Source/Runtime/Core/Public/Math/Rotator.h#L580
|
||||
* Helper function for eulerFromQuatSingularityTest, angles are expected to
|
||||
*be given in degrees
|
||||
**/
|
||||
inline FloatType clampAxis(FloatType angle) {
|
||||
// returns angle in the range (-360,360)
|
||||
angle = std::fmod(angle, 360.f);
|
||||
|
||||
if (angle < 0.f)
|
||||
{
|
||||
// shift to [0,360) range
|
||||
angle += 360.f;
|
||||
}
|
||||
if (angle < 0.f) {
|
||||
// shift to [0,360) range
|
||||
angle += 360.f;
|
||||
}
|
||||
|
||||
return angle;
|
||||
}
|
||||
return angle;
|
||||
}
|
||||
|
||||
/**
|
||||
* https://github.com/EpicGames/UnrealEngine/blob/dbced2dd59f9f5dfef1d7786fd67ad2970adf95f/Engine/Source/Runtime/Core/Public/Math/Rotator.h#L595$
|
||||
* Helper function for eulerFromQuatSingularityTest, angles are expected to be given in degrees
|
||||
**/
|
||||
inline FloatType normalizeAxis(FloatType angle)
|
||||
{
|
||||
angle = clampAxis(angle);
|
||||
if(angle > 180.f)
|
||||
{
|
||||
// shift to (-180,180]
|
||||
angle -= 360.f;
|
||||
}
|
||||
/**
|
||||
* https://github.com/EpicGames/UnrealEngine/blob/dbced2dd59f9f5dfef1d7786fd67ad2970adf95f/Engine/Source/Runtime/Core/Public/Math/Rotator.h#L595$
|
||||
* Helper function for eulerFromQuatSingularityTest, angles are expected to
|
||||
*be given in degrees
|
||||
**/
|
||||
inline FloatType normalizeAxis(FloatType angle) {
|
||||
angle = clampAxis(angle);
|
||||
if (angle > 180.f) {
|
||||
// shift to (-180,180]
|
||||
angle -= 360.f;
|
||||
}
|
||||
|
||||
return angle;
|
||||
}
|
||||
return angle;
|
||||
}
|
||||
|
||||
/**
|
||||
*
|
||||
* https://github.com/EpicGames/UnrealEngine/blob/f794321ffcad597c6232bc706304c0c9b4e154b2/Engine/Source/Runtime/Core/Private/Math/UnrealMath.cpp#L540
|
||||
* Quaternion given in (x,y,z,w) representation
|
||||
**/
|
||||
void quaternionToEulerUnrealEngine(
|
||||
const Transformation::Rotation& q,
|
||||
FloatType& yaw,
|
||||
FloatType& pitch,
|
||||
FloatType& roll
|
||||
) {
|
||||
const FloatType X = q.x();
|
||||
const FloatType Y = q.y();
|
||||
const FloatType Z = q.z();
|
||||
const FloatType W = q.w();
|
||||
|
||||
/**
|
||||
*
|
||||
* https://github.com/EpicGames/UnrealEngine/blob/f794321ffcad597c6232bc706304c0c9b4e154b2/Engine/Source/Runtime/Core/Private/Math/UnrealMath.cpp#L540
|
||||
* Quaternion given in (x,y,z,w) representation
|
||||
**/
|
||||
void quaternionToEulerUnrealEngine(const Transformation::Rotation& q, FloatType& yaw, FloatType& pitch, FloatType& roll)
|
||||
{
|
||||
const FloatType X = q.x();
|
||||
const FloatType Y = q.y();
|
||||
const FloatType Z = q.z();
|
||||
const FloatType W = q.w();
|
||||
const FloatType SingularityTest = Z * X - W * Y;
|
||||
const FloatType YawY = 2.f * (W * Z + X * Y);
|
||||
const FloatType YawX = (1.f - 2.f * (Y * Y + Z * Z));
|
||||
|
||||
const FloatType SingularityTest = Z*X-W*Y;
|
||||
const FloatType YawY = 2.f*(W*Z+X*Y);
|
||||
const FloatType YawX = (1.f-2.f*(Y*Y + Z*Z));
|
||||
// reference
|
||||
// http://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles
|
||||
// http://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToEuler/
|
||||
|
||||
// reference
|
||||
// http://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles
|
||||
// http://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToEuler/
|
||||
// this value was found from experience, the above websites recommend
|
||||
// different values but that isn't the case for us, so I went through
|
||||
// different testing, and finally found the case where both of world
|
||||
// lives happily.
|
||||
const FloatType SINGULARITY_THRESHOLD = 0.4999995;
|
||||
const FloatType RAD_TO_DEG = (180.0) / CV_PI;
|
||||
|
||||
// this value was found from experience, the above websites recommend different values
|
||||
// but that isn't the case for us, so I went through different testing, and finally found the case
|
||||
// where both of world lives happily.
|
||||
const FloatType SINGULARITY_THRESHOLD = 0.4999995;
|
||||
const FloatType RAD_TO_DEG = (180.0)/CV_PI;
|
||||
|
||||
if (SingularityTest < -SINGULARITY_THRESHOLD)
|
||||
{
|
||||
pitch = -90.;
|
||||
yaw = std::atan2(YawY, YawX) * RAD_TO_DEG;
|
||||
roll = normalizeAxis(-yaw - (2.f * std::atan2(X, W) * RAD_TO_DEG));
|
||||
}
|
||||
else if (SingularityTest > SINGULARITY_THRESHOLD)
|
||||
{
|
||||
pitch = 90.;
|
||||
yaw = std::atan2(YawY, YawX) * RAD_TO_DEG;
|
||||
roll = normalizeAxis(yaw - (2.f * std::atan2(X, W) * RAD_TO_DEG));
|
||||
}
|
||||
else
|
||||
{
|
||||
pitch = std::asin(2.f*(SingularityTest)) * RAD_TO_DEG;
|
||||
yaw = std::atan2(YawY, YawX) * RAD_TO_DEG;
|
||||
roll = std::atan2(-2.f*(W*X+Y*Z), (1.f-2.f*(X*X + Y*Y))) * RAD_TO_DEG;
|
||||
}
|
||||
}
|
||||
if (SingularityTest < -SINGULARITY_THRESHOLD) {
|
||||
pitch = -90.;
|
||||
yaw = std::atan2(YawY, YawX) * RAD_TO_DEG;
|
||||
roll = normalizeAxis(-yaw - (2.f * std::atan2(X, W) * RAD_TO_DEG));
|
||||
} else if (SingularityTest > SINGULARITY_THRESHOLD) {
|
||||
pitch = 90.;
|
||||
yaw = std::atan2(YawY, YawX) * RAD_TO_DEG;
|
||||
roll = normalizeAxis(yaw - (2.f * std::atan2(X, W) * RAD_TO_DEG));
|
||||
} else {
|
||||
pitch = std::asin(2.f * (SingularityTest)) * RAD_TO_DEG;
|
||||
yaw = std::atan2(YawY, YawX) * RAD_TO_DEG;
|
||||
roll = std::atan2(
|
||||
-2.f * (W * X + Y * Z),
|
||||
(1.f - 2.f * (X * X + Y * Y))
|
||||
)
|
||||
* RAD_TO_DEG;
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace event_camera_simulator
|
||||
|
@ -1,10 +1,10 @@
|
||||
#include <esim/imp_unrealcv_renderer/unrealcv_renderer.hpp>
|
||||
#include <esim/unrealcv_bridge/unrealcv_bridge.hpp>
|
||||
#include <esim/imp_unrealcv_renderer/utils.hpp>
|
||||
#include <opencv2/imgproc/imgproc.hpp>
|
||||
#include <opencv2/highgui/highgui.hpp>
|
||||
#include <ze/common/path_utils.hpp>
|
||||
#include <esim/unrealcv_bridge/unrealcv_bridge.hpp>
|
||||
#include <iomanip>
|
||||
#include <opencv2/highgui/highgui.hpp>
|
||||
#include <opencv2/imgproc/imgproc.hpp>
|
||||
#include <ze/common/path_utils.hpp>
|
||||
|
||||
DEFINE_double(x_offset, 0, "X offset of the trajectory, in meters");
|
||||
DEFINE_double(y_offset, 0, "Y offset of the trajectory, in meters");
|
||||
@ -13,153 +13,184 @@ DECLARE_double(trajectory_multiplier_x);
|
||||
DECLARE_double(trajectory_multiplier_y);
|
||||
DECLARE_double(trajectory_multiplier_z);
|
||||
|
||||
DEFINE_int32(unrealcv_post_median_blur, 0,
|
||||
"If > 0, median blur the raw UnrealCV images"
|
||||
"with a median filter of this size");
|
||||
DEFINE_int32(
|
||||
unrealcv_post_median_blur,
|
||||
0,
|
||||
"If > 0, median blur the raw UnrealCV images"
|
||||
"with a median filter of this size"
|
||||
);
|
||||
|
||||
DEFINE_double(unrealcv_post_gaussian_blur_sigma, 0,
|
||||
"If sigma > 0, Gaussian blur the raw UnrealCV images"
|
||||
"with a Gaussian filter standard deviation sigma.");
|
||||
DEFINE_double(
|
||||
unrealcv_post_gaussian_blur_sigma,
|
||||
0,
|
||||
"If sigma > 0, Gaussian blur the raw UnrealCV images"
|
||||
"with a Gaussian filter standard deviation sigma."
|
||||
);
|
||||
|
||||
DEFINE_string(unrealcv_output_directory, "",
|
||||
"Output directory in which to output the raw RGB images.");
|
||||
DEFINE_string(
|
||||
unrealcv_output_directory,
|
||||
"",
|
||||
"Output directory in which to output the raw RGB images."
|
||||
);
|
||||
|
||||
namespace event_camera_simulator {
|
||||
|
||||
UnrealCvRenderer::UnrealCvRenderer()
|
||||
{
|
||||
client_ = std::make_shared<UnrealCvClient>("localhost", "9000");
|
||||
frame_idx_ = 0;
|
||||
}
|
||||
|
||||
void UnrealCvRenderer::setCamera(const ze::Camera::Ptr& camera)
|
||||
{
|
||||
camera_ = camera;
|
||||
|
||||
// compute the horizontal field of view of the camera
|
||||
ze::VectorX intrinsics = camera_->projectionParameters();
|
||||
const FloatType fx = intrinsics(0);
|
||||
const FloatType hfov_deg = 2 * std::atan(0.5 * (FloatType) camera_->width() / fx) * 180. / CV_PI;
|
||||
|
||||
client_->setCameraFOV(static_cast<float>(hfov_deg));
|
||||
client_->setCameraSize(camera->width(), camera->height());
|
||||
}
|
||||
|
||||
|
||||
void UnrealCvRenderer::render(const Transformation& T_W_C, const ImagePtr& out_image, const DepthmapPtr& out_depthmap) const
|
||||
{
|
||||
CHECK_EQ(out_image->rows, camera_->height());
|
||||
CHECK_EQ(out_image->cols, camera_->width());
|
||||
|
||||
VLOG(1) << "T_W_C (ZE) = " << T_W_C;
|
||||
|
||||
const Transformation::TransformationMatrix mT_ZE_C = T_W_C.getTransformationMatrix();
|
||||
Transformation::TransformationMatrix mT_UE_ZE;
|
||||
mT_UE_ZE << 1, 0, 0, 0,
|
||||
0, -1, 0, 0,
|
||||
0, 0, 1, 0,
|
||||
0, 0, 0, 1;
|
||||
|
||||
Transformation::TransformationMatrix mT_C_UEC;
|
||||
mT_C_UEC << 0, 1, 0, 0,
|
||||
0, 0, -1, 0,
|
||||
1, 0, 0, 0,
|
||||
0, 0, 0, 1;
|
||||
|
||||
// rotate 90 deg to the right so that R_W_C = Identity <=> euler angle (0,0,0) in UnrealCV
|
||||
// Transformation::TransformationMatrix mT_rotate_90_right;
|
||||
// mT_rotate_90_right << 0, -1, 0, 0,
|
||||
// 1, 0, 0, 0,
|
||||
// 0, 0, 1, 0,
|
||||
// 0, 0, 0, 1;
|
||||
// mT_rotate_90_right << 1, 0, 0, 0,
|
||||
// 0, 1, 0, 0,
|
||||
// 0, 0, 1, 0,
|
||||
// 0, 0, 0, 1;
|
||||
// const Transformation::TransformationMatrix mT_UE_UEC = mT_rotate_90_right * mT_UE_ZE * mT_ZE_C * mT_C_UEC;
|
||||
const Transformation::TransformationMatrix mT_UE_UEC = mT_UE_ZE * mT_ZE_C * mT_C_UEC;
|
||||
const Transformation T_UE_UEC(mT_UE_UEC);
|
||||
|
||||
VLOG(1) << "T_ZE_C = " << mT_ZE_C;
|
||||
VLOG(1) << "T_UE_UEC = " << T_UE_UEC;
|
||||
|
||||
FloatType yaw, pitch, roll;
|
||||
quaternionToEulerUnrealEngine(T_UE_UEC.getRotation(), yaw, pitch, roll);
|
||||
|
||||
const FloatType x_offset = static_cast<FloatType>(FLAGS_x_offset);
|
||||
const FloatType y_offset = static_cast<FloatType>(FLAGS_y_offset);
|
||||
const FloatType z_offset = static_cast<FloatType>(FLAGS_z_offset);
|
||||
|
||||
const FloatType x = 100. * (FLAGS_trajectory_multiplier_x * T_UE_UEC.getPosition()[0] + x_offset);
|
||||
const FloatType y = 100. * (FLAGS_trajectory_multiplier_y * T_UE_UEC.getPosition()[1] + y_offset);
|
||||
const FloatType z = 100. * (FLAGS_trajectory_multiplier_z * T_UE_UEC.getPosition()[2] + z_offset);
|
||||
|
||||
VLOG(1) << yaw << " " << pitch << " " << roll;
|
||||
|
||||
CameraData cam_data = {0,
|
||||
pitch,
|
||||
yaw,
|
||||
roll,
|
||||
x,
|
||||
y,
|
||||
z};
|
||||
|
||||
client_->setCamera(cam_data);
|
||||
cv::Mat img = client_->getImage(0);
|
||||
VLOG(5) << "Got image from the UnrealCV client";
|
||||
|
||||
// (optionally) save raw RGB image to the output directory
|
||||
if(FLAGS_unrealcv_output_directory != "")
|
||||
{
|
||||
std::stringstream ss_nr;
|
||||
ss_nr << std::setw(10) << std::setfill('0') << frame_idx_;
|
||||
std::string path_frame = ze::joinPath(FLAGS_unrealcv_output_directory, "frame_" + ss_nr.str() + ".png");
|
||||
VLOG(1) << "Saving raw RGB image to: " << path_frame;
|
||||
cv::imwrite(path_frame, img, {cv::IMWRITE_PNG_COMPRESSION, 9});
|
||||
}
|
||||
|
||||
cv::Mat img_gray;
|
||||
cv::cvtColor(img, img_gray, cv::COLOR_BGR2GRAY);
|
||||
|
||||
if(FLAGS_unrealcv_post_median_blur > 0)
|
||||
{
|
||||
cv::medianBlur(img_gray, img_gray, FLAGS_unrealcv_post_median_blur);
|
||||
}
|
||||
|
||||
if(FLAGS_unrealcv_post_gaussian_blur_sigma > 0)
|
||||
{
|
||||
cv::GaussianBlur(img_gray, img_gray, cv::Size(-1,-1), FLAGS_unrealcv_post_gaussian_blur_sigma);
|
||||
}
|
||||
|
||||
cv::resize(img_gray, img_gray, cv::Size(camera_->width(), camera_->height()));
|
||||
img_gray.convertTo(*out_image, cv::DataType<ImageFloatType>::type, 1./255.);
|
||||
|
||||
cv::Mat depth = client_->getDepth(0);
|
||||
VLOG(5) << "Got depth map from the UnrealCV client";
|
||||
CHECK_EQ(depth.type(), CV_32F);
|
||||
|
||||
cv::resize(depth, depth, cv::Size(camera_->width(), camera_->height()));
|
||||
depth.convertTo(*out_depthmap, cv::DataType<ImageFloatType>::type);
|
||||
|
||||
// the depth provided by the unrealcv client is the distance from the scene to the camera center,
|
||||
// we need to convert it to the distance to image plane (see Github issue: https://github.com/unrealcv/unrealcv/issues/14)
|
||||
const ImageFloatType yc = 0.5 * static_cast<ImageFloatType>(camera_->height()) - 1.0;
|
||||
const ImageFloatType xc = 0.5 * static_cast<ImageFloatType>(camera_->width()) - 1.0;
|
||||
const ImageFloatType f = static_cast<ImageFloatType>(camera_->projectionParameters()(0));
|
||||
for(int y=0; y<camera_->height(); ++y)
|
||||
{
|
||||
for(int x=0; x<camera_->width(); ++x)
|
||||
{
|
||||
const ImageFloatType point_depth = (*out_depthmap)(y,x);
|
||||
const ImageFloatType dx = static_cast<ImageFloatType>(x) - xc;
|
||||
const ImageFloatType dy = static_cast<ImageFloatType>(y) - yc;
|
||||
const ImageFloatType distance_from_center = std::sqrt(dx*dx + dy*dy);
|
||||
const ImageFloatType plane_depth = point_depth / std::sqrt(1.0 + std::pow(distance_from_center / f, 2));
|
||||
(*out_depthmap)(y,x) = plane_depth;
|
||||
UnrealCvRenderer::UnrealCvRenderer() {
|
||||
client_ = std::make_shared<UnrealCvClient>("localhost", "9000");
|
||||
frame_idx_ = 0;
|
||||
}
|
||||
}
|
||||
|
||||
frame_idx_++;
|
||||
}
|
||||
void UnrealCvRenderer::setCamera(const ze::Camera::Ptr& camera) {
|
||||
camera_ = camera;
|
||||
|
||||
// compute the horizontal field of view of the camera
|
||||
ze::VectorX intrinsics = camera_->projectionParameters();
|
||||
const FloatType fx = intrinsics(0);
|
||||
const FloatType hfov_deg =
|
||||
2 * std::atan(0.5 * (FloatType) camera_->width() / fx) * 180.
|
||||
/ CV_PI;
|
||||
|
||||
client_->setCameraFOV(static_cast<float>(hfov_deg));
|
||||
client_->setCameraSize(camera->width(), camera->height());
|
||||
}
|
||||
|
||||
void UnrealCvRenderer::render(
|
||||
const Transformation& T_W_C,
|
||||
const ImagePtr& out_image,
|
||||
const DepthmapPtr& out_depthmap
|
||||
) const {
|
||||
CHECK_EQ(out_image->rows, camera_->height());
|
||||
CHECK_EQ(out_image->cols, camera_->width());
|
||||
|
||||
VLOG(1) << "T_W_C (ZE) = " << T_W_C;
|
||||
|
||||
const Transformation::TransformationMatrix mT_ZE_C =
|
||||
T_W_C.getTransformationMatrix();
|
||||
Transformation::TransformationMatrix mT_UE_ZE;
|
||||
mT_UE_ZE << 1, 0, 0, 0, 0, -1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1;
|
||||
|
||||
Transformation::TransformationMatrix mT_C_UEC;
|
||||
mT_C_UEC << 0, 1, 0, 0, 0, 0, -1, 0, 1, 0, 0, 0, 0, 0, 0, 1;
|
||||
|
||||
// rotate 90 deg to the right so that R_W_C = Identity <=> euler angle
|
||||
// (0,0,0) in UnrealCV
|
||||
// Transformation::TransformationMatrix mT_rotate_90_right;
|
||||
// mT_rotate_90_right << 0, -1, 0, 0,
|
||||
// 1, 0, 0, 0,
|
||||
// 0, 0, 1, 0,
|
||||
// 0, 0, 0, 1;
|
||||
// mT_rotate_90_right << 1, 0, 0, 0,
|
||||
// 0, 1, 0, 0,
|
||||
// 0, 0, 1, 0,
|
||||
// 0, 0, 0, 1;
|
||||
// const Transformation::TransformationMatrix mT_UE_UEC =
|
||||
// mT_rotate_90_right
|
||||
// * mT_UE_ZE * mT_ZE_C * mT_C_UEC;
|
||||
const Transformation::TransformationMatrix mT_UE_UEC =
|
||||
mT_UE_ZE * mT_ZE_C * mT_C_UEC;
|
||||
const Transformation T_UE_UEC(mT_UE_UEC);
|
||||
|
||||
VLOG(1) << "T_ZE_C = " << mT_ZE_C;
|
||||
VLOG(1) << "T_UE_UEC = " << T_UE_UEC;
|
||||
|
||||
FloatType yaw, pitch, roll;
|
||||
quaternionToEulerUnrealEngine(T_UE_UEC.getRotation(), yaw, pitch, roll);
|
||||
|
||||
const FloatType x_offset = static_cast<FloatType>(FLAGS_x_offset);
|
||||
const FloatType y_offset = static_cast<FloatType>(FLAGS_y_offset);
|
||||
const FloatType z_offset = static_cast<FloatType>(FLAGS_z_offset);
|
||||
|
||||
const FloatType x =
|
||||
100.
|
||||
* (FLAGS_trajectory_multiplier_x * T_UE_UEC.getPosition()[0]
|
||||
+ x_offset);
|
||||
const FloatType y =
|
||||
100.
|
||||
* (FLAGS_trajectory_multiplier_y * T_UE_UEC.getPosition()[1]
|
||||
+ y_offset);
|
||||
const FloatType z =
|
||||
100.
|
||||
* (FLAGS_trajectory_multiplier_z * T_UE_UEC.getPosition()[2]
|
||||
+ z_offset);
|
||||
|
||||
VLOG(1) << yaw << " " << pitch << " " << roll;
|
||||
|
||||
CameraData cam_data = {0, pitch, yaw, roll, x, y, z};
|
||||
|
||||
client_->setCamera(cam_data);
|
||||
cv::Mat img = client_->getImage(0);
|
||||
VLOG(5) << "Got image from the UnrealCV client";
|
||||
|
||||
// (optionally) save raw RGB image to the output directory
|
||||
if (FLAGS_unrealcv_output_directory != "") {
|
||||
std::stringstream ss_nr;
|
||||
ss_nr << std::setw(10) << std::setfill('0') << frame_idx_;
|
||||
std::string path_frame = ze::joinPath(
|
||||
FLAGS_unrealcv_output_directory,
|
||||
"frame_" + ss_nr.str() + ".png"
|
||||
);
|
||||
VLOG(1) << "Saving raw RGB image to: " << path_frame;
|
||||
cv::imwrite(path_frame, img, {cv::IMWRITE_PNG_COMPRESSION, 9});
|
||||
}
|
||||
|
||||
cv::Mat img_gray;
|
||||
cv::cvtColor(img, img_gray, cv::COLOR_BGR2GRAY);
|
||||
|
||||
if (FLAGS_unrealcv_post_median_blur > 0)
|
||||
cv::medianBlur(img_gray, img_gray, FLAGS_unrealcv_post_median_blur);
|
||||
|
||||
if (FLAGS_unrealcv_post_gaussian_blur_sigma > 0) {
|
||||
cv::GaussianBlur(
|
||||
img_gray,
|
||||
img_gray,
|
||||
cv::Size(-1, -1),
|
||||
FLAGS_unrealcv_post_gaussian_blur_sigma
|
||||
);
|
||||
}
|
||||
|
||||
cv::resize(
|
||||
img_gray,
|
||||
img_gray,
|
||||
cv::Size(camera_->width(), camera_->height())
|
||||
);
|
||||
img_gray.convertTo(
|
||||
*out_image,
|
||||
cv::DataType<ImageFloatType>::type,
|
||||
1. / 255.
|
||||
);
|
||||
|
||||
cv::Mat depth = client_->getDepth(0);
|
||||
VLOG(5) << "Got depth map from the UnrealCV client";
|
||||
CHECK_EQ(depth.type(), CV_32F);
|
||||
|
||||
cv::resize(depth, depth, cv::Size(camera_->width(), camera_->height()));
|
||||
depth.convertTo(*out_depthmap, cv::DataType<ImageFloatType>::type);
|
||||
|
||||
// the depth provided by the unrealcv client is the distance from the
|
||||
// scene to the camera center, we need to convert it to the distance to
|
||||
// image plane (see Github issue:
|
||||
// https://github.com/unrealcv/unrealcv/issues/14)
|
||||
const ImageFloatType yc =
|
||||
0.5 * static_cast<ImageFloatType>(camera_->height()) - 1.0;
|
||||
const ImageFloatType xc =
|
||||
0.5 * static_cast<ImageFloatType>(camera_->width()) - 1.0;
|
||||
const ImageFloatType f =
|
||||
static_cast<ImageFloatType>(camera_->projectionParameters()(0));
|
||||
for (int y = 0; y < camera_->height(); ++y) {
|
||||
for (int x = 0; x < camera_->width(); ++x) {
|
||||
const ImageFloatType point_depth = (*out_depthmap)(y, x);
|
||||
const ImageFloatType dx = static_cast<ImageFloatType>(x) - xc;
|
||||
const ImageFloatType dy = static_cast<ImageFloatType>(y) - yc;
|
||||
const ImageFloatType distance_from_center =
|
||||
std::sqrt(dx * dx + dy * dy);
|
||||
const ImageFloatType plane_depth =
|
||||
point_depth
|
||||
/ std::sqrt(1.0 + std::pow(distance_from_center / f, 2));
|
||||
(*out_depthmap)(y, x) = plane_depth;
|
||||
}
|
||||
}
|
||||
|
||||
frame_idx_++;
|
||||
}
|
||||
|
||||
} // namespace event_camera_simulator
|
||||
|
Loading…
x
Reference in New Issue
Block a user