Compare commits
5 Commits
Author | SHA1 | Date | |
---|---|---|---|
ec4cc85ca3 | |||
97f9def306 | |||
f68dedeb20 | |||
4eae988999 | |||
62a35ecafd |
19
src/main.cpp
19
src/main.cpp
@ -13,24 +13,27 @@
|
||||
int main(int argc, char* argv[]) {
|
||||
// std::string pos =
|
||||
// "r2qkb1r/2p1pppp/p1n1b3/1p6/B2P4/2P1P3/P4PPP/R1BQK1NR w KQkq - 0 9 ";
|
||||
// std::string pos = "8/6K1/5P2/8/1k6/8/8/8 w - - 0 1";
|
||||
std::string pos = "3r4/3r4/3k4/8/3K4/8/8/8 w - - 0 1";
|
||||
|
||||
// pos for ai timing<
|
||||
std::string pos =
|
||||
"r3k2r/p1ppqpb1/Bn2pnp1/3PN3/1p2P3/2N2Q1p/PPPB1PPP/R3K2R b KQkq - 0 3";
|
||||
// std::string pos =
|
||||
// "r3k2r/p1ppqpb1/Bn2pnp1/3PN3/1p2P3/2N2Q1p/PPPB1PPP/R3K2R b KQkq - 0
|
||||
// 3";
|
||||
|
||||
Board b = Board::setup_fen_position(pos);
|
||||
|
||||
ai::v0_random p1(true, std::chrono::milliseconds(1000));
|
||||
// ai::v1_pure_minimax p2(false, std::chrono::milliseconds(20000));
|
||||
// ai::v2_alpha_beta p2(false, std::chrono::milliseconds(20000));
|
||||
ai::v3_AB_ordering p2(false, std::chrono::milliseconds(20000));
|
||||
// ai::v3_AB_ordering p2(false, std::chrono::milliseconds(20000));
|
||||
// ai::v4_search_captures p2(false, std::chrono::milliseconds(20000));
|
||||
// ai::v5_better_endgame p2(false, std::chrono::milliseconds(20000));
|
||||
ai::v6_iterative_deepening p2(false, std::chrono::milliseconds(2000));
|
||||
|
||||
// GUI gui;
|
||||
NoOpView gui;
|
||||
AIvsAIController manual(b, gui, p1, p2);
|
||||
// HumanVsAIController manual(b, gui, p2);
|
||||
GUI gui;
|
||||
// NoOpView gui;
|
||||
// AIvsAIController manual(b, gui, p1, p2);
|
||||
HumanVsAIController manual(b, gui, p2);
|
||||
|
||||
Controller& controller = manual;
|
||||
|
||||
|
@ -4,7 +4,10 @@
|
||||
#include <ostream>
|
||||
#include <thread>
|
||||
|
||||
static long int position_counter = 0;
|
||||
|
||||
Move ai::AI::search(const Board& b) {
|
||||
position_counter = 0;
|
||||
Move result;
|
||||
|
||||
std::condition_variable cv;
|
||||
@ -47,6 +50,13 @@ Move ai::AI::search(const Board& b) {
|
||||
// Ensure timer thread is also stopped
|
||||
timer_thread.join();
|
||||
|
||||
std::cout << "Took " << elapsed << " ms" << std::endl;
|
||||
std::cout << "Took " << elapsed << " ms, " << "Looked at "
|
||||
<< position_counter << " positions" << std::endl;
|
||||
return result;
|
||||
}
|
||||
|
||||
int ai::AI::eval(const Board& b) {
|
||||
int ret = _eval(b);
|
||||
position_counter++;
|
||||
return ret;
|
||||
}
|
||||
|
@ -20,8 +20,9 @@ namespace ai {
|
||||
std::atomic<bool> stop_computation = false;
|
||||
|
||||
Move search(const Board& b);
|
||||
int eval(const Board&);
|
||||
|
||||
virtual int eval(const Board&) = 0;
|
||||
virtual int _eval(const Board&) = 0;
|
||||
};
|
||||
|
||||
struct v0_random : public AI {
|
||||
@ -29,7 +30,7 @@ namespace ai {
|
||||
|
||||
Move _search(const Board&) override;
|
||||
|
||||
int eval(const Board&) override {
|
||||
int _eval(const Board&) override {
|
||||
return 0;
|
||||
};
|
||||
};
|
||||
@ -41,39 +42,63 @@ namespace ai {
|
||||
v1_pure_minimax(bool w, std::chrono::milliseconds tt): AI(w, tt) {}
|
||||
|
||||
Move _search(const Board&) override;
|
||||
int eval(const Board&) override;
|
||||
int _eval(const Board&) override;
|
||||
};
|
||||
|
||||
class v2_alpha_beta : public AI {
|
||||
// looks two moves ahead, with alpha-beta pruning (no move ordering)
|
||||
int _search(const Board&, int, int, int);
|
||||
virtual int _search(const Board&, int, int, int);
|
||||
|
||||
public:
|
||||
v2_alpha_beta(bool w, std::chrono::milliseconds tt): AI(w, tt) {}
|
||||
|
||||
Move _search(const Board&) override;
|
||||
int eval(const Board&) override;
|
||||
virtual Move _search(const Board&) override;
|
||||
virtual int _eval(const Board&) override;
|
||||
};
|
||||
|
||||
class v3_AB_ordering : public AI {
|
||||
// looks two moves ahead, with alpha-beta pruning, with move ordering
|
||||
virtual int _search(const Board&, int, int, int);
|
||||
virtual int _ab_search(const Board&, int, int, int);
|
||||
|
||||
public:
|
||||
v3_AB_ordering(bool w, std::chrono::milliseconds tt): AI(w, tt) {}
|
||||
|
||||
Move _search(const Board&) override;
|
||||
int eval(const Board&) override;
|
||||
virtual Move _search(const Board&) override;
|
||||
virtual int _eval(const Board&) override;
|
||||
};
|
||||
|
||||
class v4_search_captures : public v3_AB_ordering {
|
||||
protected:
|
||||
// same as v3, but looking at only at captures when leaf is reached,
|
||||
// until no captures are left
|
||||
int _search(const Board&, int, int, int) override;
|
||||
int _search_captures(const Board&, int, int);
|
||||
virtual int _ab_search(const Board&, int, int, int) override;
|
||||
virtual int _search_captures(const Board&, int, int);
|
||||
|
||||
public:
|
||||
v4_search_captures(bool w, std::chrono::milliseconds tt)
|
||||
: v3_AB_ordering(w, tt) {}
|
||||
};
|
||||
|
||||
class v5_better_endgame : public v4_search_captures {
|
||||
// same as v4, but with a better evaluation function, that forces the
|
||||
// king towards the corner of the board for endgames
|
||||
|
||||
public:
|
||||
v5_better_endgame(bool w, std::chrono::milliseconds tt)
|
||||
: v4_search_captures(w, tt) {}
|
||||
|
||||
virtual int _eval(const Board&) override;
|
||||
};
|
||||
|
||||
class v6_iterative_deepening : public v5_better_endgame {
|
||||
// same as v5, but instead of just looking 2 moves ahead, it does
|
||||
// iterative depening until and keeps on searching until the thinking
|
||||
// time runs out
|
||||
|
||||
public:
|
||||
v6_iterative_deepening(bool w, std::chrono::milliseconds tt)
|
||||
: v5_better_endgame(w, tt) {}
|
||||
|
||||
virtual Move _search(const Board&) override;
|
||||
};
|
||||
} // namespace ai
|
||||
|
@ -7,10 +7,7 @@
|
||||
|
||||
#define MULTITHREADED 1
|
||||
|
||||
static int position_counter = 0;
|
||||
|
||||
Move ai::v1_pure_minimax::_search(const Board& b) {
|
||||
position_counter = 0;
|
||||
std::vector<Move> moves = b.all_legal_moves();
|
||||
|
||||
Move best_move;
|
||||
@ -52,7 +49,6 @@ Move ai::v1_pure_minimax::_search(const Board& b) {
|
||||
}
|
||||
}
|
||||
#endif
|
||||
std::cout << "Looked at " << position_counter << " positions" << std::endl;
|
||||
return best_move;
|
||||
}
|
||||
|
||||
@ -78,8 +74,7 @@ int ai::v1_pure_minimax::_search(const Board& b, int depth) {
|
||||
return best_evaluation;
|
||||
}
|
||||
|
||||
int ai::v1_pure_minimax::eval(const Board& b) {
|
||||
position_counter++;
|
||||
int ai::v1_pure_minimax::_eval(const Board& b) {
|
||||
int white_eval = count_material(b, Colour::White);
|
||||
int black_eval = count_material(b, Colour::Black);
|
||||
|
||||
|
@ -7,11 +7,7 @@
|
||||
|
||||
#define MULTITHREADED 1
|
||||
|
||||
|
||||
static int position_counter = 0;
|
||||
|
||||
Move ai::v2_alpha_beta::_search(const Board& b) {
|
||||
position_counter = 0;
|
||||
std::vector<Move> moves = b.all_legal_moves();
|
||||
|
||||
Move best_move;
|
||||
@ -53,7 +49,6 @@ Move ai::v2_alpha_beta::_search(const Board& b) {
|
||||
}
|
||||
}
|
||||
#endif
|
||||
std::cout << "Looked at " << position_counter << " positions" << std::endl;
|
||||
return best_move;
|
||||
}
|
||||
|
||||
@ -79,8 +74,7 @@ int ai::v2_alpha_beta::_search(const Board& b, int depth, int alpha, int beta) {
|
||||
return alpha;
|
||||
}
|
||||
|
||||
int ai::v2_alpha_beta::eval(const Board& b) {
|
||||
position_counter++;
|
||||
int ai::v2_alpha_beta::_eval(const Board& b) {
|
||||
int white_eval = count_material(b, Colour::White);
|
||||
int black_eval = count_material(b, Colour::Black);
|
||||
|
||||
|
@ -8,11 +8,7 @@
|
||||
|
||||
#define MULTITHREADED 1
|
||||
|
||||
|
||||
static int position_counter;
|
||||
|
||||
Move ai::v3_AB_ordering::_search(const Board& b) {
|
||||
position_counter = 0;
|
||||
std::vector<Move> moves = b.all_legal_moves();
|
||||
|
||||
Move best_move;
|
||||
@ -25,9 +21,11 @@ Move ai::v3_AB_ordering::_search(const Board& b) {
|
||||
std::map<Move, std::future<int>> futures;
|
||||
for (const Move& move : moves) {
|
||||
Board tmp_board = b.make_move(move);
|
||||
futures.insert({move, pool.enqueue([&, tmp_board]() {
|
||||
return _search(tmp_board, 3, -INFINITY, INFINITY);
|
||||
})});
|
||||
futures.insert(
|
||||
{move, pool.enqueue([&, tmp_board]() {
|
||||
return _ab_search(tmp_board, 3, -INFINITY, INFINITY);
|
||||
})}
|
||||
);
|
||||
}
|
||||
|
||||
int counter = 0;
|
||||
@ -54,11 +52,10 @@ Move ai::v3_AB_ordering::_search(const Board& b) {
|
||||
}
|
||||
}
|
||||
#endif
|
||||
std::cout << "Looked at " << position_counter << " positions" << std::endl;
|
||||
return best_move;
|
||||
}
|
||||
|
||||
int ai::v3_AB_ordering::_search(
|
||||
int ai::v3_AB_ordering::_ab_search(
|
||||
const Board& b, int depth, int alpha, int beta
|
||||
) {
|
||||
if (depth == 0 || stop_computation)
|
||||
@ -78,7 +75,7 @@ int ai::v3_AB_ordering::_search(
|
||||
Move best_move;
|
||||
for (const Move& move : moves) {
|
||||
Board tmp_board = b.make_move(move);
|
||||
int tmp_eval = -_search(tmp_board, depth - 1, -beta, -alpha);
|
||||
int tmp_eval = -_ab_search(tmp_board, depth - 1, -beta, -alpha);
|
||||
if (tmp_eval >= beta)
|
||||
return beta;
|
||||
alpha = std::max(alpha, tmp_eval);
|
||||
@ -86,8 +83,7 @@ int ai::v3_AB_ordering::_search(
|
||||
return alpha;
|
||||
}
|
||||
|
||||
int ai::v3_AB_ordering::eval(const Board& b) {
|
||||
position_counter++;
|
||||
int ai::v3_AB_ordering::_eval(const Board& b) {
|
||||
int white_eval = count_material(b, Colour::White);
|
||||
int black_eval = count_material(b, Colour::Black);
|
||||
|
||||
|
@ -6,10 +6,7 @@
|
||||
|
||||
#define MULTITHREADED 1
|
||||
|
||||
|
||||
static int position_counter;
|
||||
|
||||
int ai::v4_search_captures::_search(
|
||||
int ai::v4_search_captures::_ab_search(
|
||||
const Board& b, int depth, int alpha, int beta
|
||||
) {
|
||||
if (depth == 0 || stop_computation)
|
||||
@ -29,7 +26,7 @@ int ai::v4_search_captures::_search(
|
||||
Move best_move;
|
||||
for (const Move& move : moves) {
|
||||
Board tmp_board = b.make_move(move);
|
||||
int tmp_eval = -_search(tmp_board, depth - 1, -beta, -alpha);
|
||||
int tmp_eval = -_ab_search(tmp_board, depth - 1, -beta, -alpha);
|
||||
if (tmp_eval >= beta)
|
||||
return beta;
|
||||
alpha = std::max(alpha, tmp_eval);
|
||||
|
52
src/model/ais/v5_better_endgames.cpp
Normal file
52
src/model/ais/v5_better_endgames.cpp
Normal file
@ -0,0 +1,52 @@
|
||||
#include "../pieces/piece.hpp"
|
||||
#include "../utils/utils.hpp"
|
||||
#include "ai.hpp"
|
||||
|
||||
#include <algorithm>
|
||||
|
||||
static int force_king_to_corner(
|
||||
int8_t attacking_king, int8_t defending_king, float endgame_weight
|
||||
) {
|
||||
int eval = 0;
|
||||
Coords def_xy = Coords::from_index(defending_king);
|
||||
|
||||
Coords def_dist_to_center{
|
||||
std::max(3 - def_xy.x, def_xy.x - 4),
|
||||
std::max(3 - def_xy.y, def_xy.y - 4)
|
||||
};
|
||||
eval += def_dist_to_center.x + def_dist_to_center.y;
|
||||
|
||||
// make attacking king go closer to defending king to cut off escape routes
|
||||
Coords attack_xy = Coords::from_index(attacking_king);
|
||||
Coords dist_between_kings{
|
||||
std::abs(attack_xy.x - def_xy.x),
|
||||
std::abs(attack_xy.y - def_xy.y)
|
||||
};
|
||||
int distance = dist_between_kings.x + dist_between_kings.y;
|
||||
eval += 14 - distance;
|
||||
|
||||
return (int) (eval * 10 * endgame_weight);
|
||||
}
|
||||
|
||||
static float endgame_phase_weight(int material_count_no_pawns) {
|
||||
static int endgame_material_start =
|
||||
RookValue * 2 + BishopValue + KnightValue;
|
||||
|
||||
float multiplier = 1.f / endgame_material_start;
|
||||
return 1.f - std::min(1.f, material_count_no_pawns * multiplier);
|
||||
}
|
||||
|
||||
int ai::v5_better_endgame::_eval(const Board& b) {
|
||||
int old_eval = v4_search_captures::_eval(b);
|
||||
Colour attacking_colour = b.white_to_play ? White : Black;
|
||||
Colour defending_colour = b.white_to_play ? Black : White;
|
||||
return old_eval
|
||||
+ force_king_to_corner(
|
||||
b.get_king_of(attacking_colour),
|
||||
b.get_king_of(defending_colour),
|
||||
endgame_phase_weight(
|
||||
count_material(b, attacking_colour, false)
|
||||
+ count_material(b, defending_colour, false)
|
||||
)
|
||||
);
|
||||
}
|
45
src/model/ais/v6_iterative_deepening.cpp
Normal file
45
src/model/ais/v6_iterative_deepening.cpp
Normal file
@ -0,0 +1,45 @@
|
||||
#include "../pieces/piece.hpp"
|
||||
#include "../utils/threadpool.hpp"
|
||||
#include "../utils/utils.hpp"
|
||||
#include "ai.hpp"
|
||||
|
||||
#include <map>
|
||||
|
||||
static int position_counter = 0;
|
||||
|
||||
Move ai::v6_iterative_deepening::_search(const Board& b) {
|
||||
ThreadPool pool(std::thread::hardware_concurrency());
|
||||
std::vector<Move> moves = b.all_legal_moves();
|
||||
|
||||
Move best_move;
|
||||
int best_eval = -INFINITY;
|
||||
|
||||
std::map<Move, std::future<int>> futures;
|
||||
int depth;
|
||||
for (depth = 1; !stop_computation; depth++) {
|
||||
for (const Move& move : moves) {
|
||||
Board tmp_board = b.make_move(move);
|
||||
futures.insert(
|
||||
{move, pool.enqueue([&, tmp_board]() {
|
||||
return _ab_search(tmp_board, depth, -INFINITY, INFINITY);
|
||||
})}
|
||||
);
|
||||
}
|
||||
|
||||
int counter = 0;
|
||||
for (auto& [move, future] : futures) {
|
||||
int eval = future.get();
|
||||
counter++;
|
||||
if (!am_white)
|
||||
eval *= -1;
|
||||
if (eval > best_eval) {
|
||||
best_eval = eval;
|
||||
best_move = move;
|
||||
}
|
||||
}
|
||||
futures.clear();
|
||||
}
|
||||
|
||||
std::cout << "Went up until depth: " << depth << std::endl;
|
||||
return best_move;
|
||||
}
|
@ -8,7 +8,6 @@
|
||||
|
||||
struct Board {
|
||||
private:
|
||||
int8_t get_king_of(int8_t) const;
|
||||
bool _no_legal_moves_for(Colour) const;
|
||||
bool _is_check_for(Colour) const;
|
||||
bool nlm = false, check = false;
|
||||
@ -25,6 +24,7 @@ struct Board {
|
||||
|
||||
static Board setup_fen_position(std::string fen);
|
||||
|
||||
int8_t get_king_of(int8_t) const;
|
||||
Board skip_turn() const;
|
||||
Board make_move(Move, bool = true) const;
|
||||
std::string to_fen() const;
|
||||
|
@ -26,10 +26,13 @@ int piece_value(Piece p) {
|
||||
}
|
||||
}
|
||||
|
||||
int count_material(const Board& b, int8_t colour) {
|
||||
int count_material(const Board& b, int8_t colour, bool count_pawns) {
|
||||
int ret = 0;
|
||||
for (int i = 0; i < 64; i++)
|
||||
for (int i = 0; i < 64; i++) {
|
||||
if (b.piece_at(i) == Pawn && !count_pawns)
|
||||
continue;
|
||||
if (b.colour_at(i) == colour)
|
||||
ret += piece_value(b.piece_at(i));
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
@ -7,7 +7,7 @@
|
||||
#include <vector>
|
||||
|
||||
std::vector<int8_t> to_target_square(std::vector<Move>);
|
||||
int count_material(const Board&, int8_t);
|
||||
int count_material(const Board&, int8_t, bool = true);
|
||||
int piece_value(Piece);
|
||||
|
||||
const int INFINITY = std::numeric_limits<int>::max();
|
||||
|
Reference in New Issue
Block a user