mirror of
https://github.com/karma-riuk/hdr_esim.git
synced 2025-07-02 08:58:14 +02:00
initial commit
This commit is contained in:
190
event_camera_simulator/esim_common/src/utils.cpp
Normal file
190
event_camera_simulator/esim_common/src/utils.cpp
Normal file
@ -0,0 +1,190 @@
|
||||
#include <esim/common/utils.hpp>
|
||||
#include <ze/cameras/camera_models.hpp>
|
||||
#include <opencv2/imgproc/imgproc.hpp>
|
||||
|
||||
namespace event_camera_simulator {
|
||||
|
||||
OpticFlowHelper::OpticFlowHelper(const ze::Camera::Ptr& camera)
|
||||
: camera_(camera)
|
||||
{
|
||||
CHECK(camera_);
|
||||
precomputePixelToBearingLookupTable();
|
||||
}
|
||||
|
||||
void OpticFlowHelper::precomputePixelToBearingLookupTable()
|
||||
{
|
||||
// points_C is a matrix containing the coordinates of each pixel coordinate in the image plane
|
||||
ze::Keypoints points_C(2, camera_->width() * camera_->height());
|
||||
for(int y=0; y<camera_->height(); ++y)
|
||||
{
|
||||
for(int x=0; x<camera_->width(); ++x)
|
||||
{
|
||||
points_C.col(x + camera_->width() * y) = ze::Keypoint(x,y);
|
||||
}
|
||||
}
|
||||
bearings_C_ = camera_->backProjectVectorized(points_C);
|
||||
bearings_C_.array().rowwise() /= bearings_C_.row(2).array();
|
||||
}
|
||||
|
||||
void OpticFlowHelper::computeFromDepthAndTwist(const ze::Vector3& w_WC, const ze::Vector3& v_WC,
|
||||
const DepthmapPtr& depthmap, OpticFlowPtr& flow)
|
||||
{
|
||||
CHECK(depthmap);
|
||||
CHECK_EQ(depthmap->rows, camera_->height());
|
||||
CHECK_EQ(depthmap->cols, camera_->width());
|
||||
CHECK(depthmap->isContinuous());
|
||||
|
||||
const ze::Vector3 w_CW = -w_WC; // rotation speed of the world wrt the camera
|
||||
const ze::Vector3 v_CW = -v_WC; // speed of the world wrt the camera
|
||||
const ze::Matrix33 R_CW = ze::skewSymmetric(w_CW);
|
||||
|
||||
Eigen::Map<const Eigen::Matrix<ImageFloatType, 1, Eigen::Dynamic, Eigen::RowMajor>> depths(depthmap->ptr<ImageFloatType>(), 1, depthmap->rows * depthmap->cols);
|
||||
ze::Positions Xs = bearings_C_;
|
||||
Xs.array().rowwise() *= depths.cast<FloatType>().array();
|
||||
|
||||
ze::Matrix6X dproject_dX =
|
||||
camera_->dProject_dLandmarkVectorized(Xs);
|
||||
|
||||
for(int y=0; y<camera_->height(); ++y)
|
||||
{
|
||||
for(int x=0; x<camera_->width(); ++x)
|
||||
{
|
||||
const Vector3 X = Xs.col(x + camera_->width() * y);
|
||||
ze::Matrix31 dXdt = R_CW * X + v_CW;
|
||||
ze::Vector2 flow_vec
|
||||
= Eigen::Map<ze::Matrix23>(dproject_dX.col(x + camera_->width() * y).data()) * dXdt;
|
||||
|
||||
(*flow)(y,x) = cv::Vec<FloatType, 2>(flow_vec(0), flow_vec(1));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void OpticFlowHelper::computeFromDepthCamTwistAndObjDepthAndTwist(const ze::Vector3& w_WC, const ze::Vector3& v_WC, const DepthmapPtr& depthmap,
|
||||
const ze::Vector3& r_COBJ, const ze::Vector3& w_WOBJ, const ze::Vector3& v_WOBJ, OpticFlowPtr& flow)
|
||||
{
|
||||
CHECK(depthmap);
|
||||
CHECK_EQ(depthmap->rows, camera_->height());
|
||||
CHECK_EQ(depthmap->cols, camera_->width());
|
||||
CHECK(depthmap->isContinuous());
|
||||
|
||||
const ze::Matrix33 w_WC_tilde = ze::skewSymmetric(w_WC);
|
||||
const ze::Matrix33 w_WOBJ_tilde = ze::skewSymmetric(w_WOBJ);
|
||||
|
||||
Eigen::Map<const Eigen::Matrix<ImageFloatType, 1, Eigen::Dynamic, Eigen::RowMajor>> depths(depthmap->ptr<ImageFloatType>(), 1, depthmap->rows * depthmap->cols);
|
||||
ze::Positions Xs = bearings_C_;
|
||||
Xs.array().rowwise() *= depths.cast<FloatType>().array();
|
||||
|
||||
ze::Matrix6X dproject_dX =
|
||||
camera_->dProject_dLandmarkVectorized(Xs);
|
||||
|
||||
for(int y=0; y<camera_->height(); ++y)
|
||||
{
|
||||
for(int x=0; x<camera_->width(); ++x)
|
||||
{
|
||||
const Vector3 r_CX = Xs.col(x + camera_->width() * y);
|
||||
const Vector3 r_OBJX = r_CX - r_COBJ;
|
||||
|
||||
ze::Matrix31 dXdt = v_WOBJ - v_WC - w_WC_tilde*r_CX + w_WOBJ_tilde*r_OBJX;
|
||||
ze::Vector2 flow_vec
|
||||
= Eigen::Map<ze::Matrix23>(dproject_dX.col(x + camera_->width() * y).data()) * dXdt;
|
||||
|
||||
(*flow)(y,x) = cv::Vec<FloatType, 2>(flow_vec(0), flow_vec(1));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
FloatType maxMagnitudeOpticFlow(const OpticFlowPtr& flow)
|
||||
{
|
||||
CHECK(flow);
|
||||
FloatType max_squared_magnitude = 0;
|
||||
for(int y=0; y<flow->rows; ++y)
|
||||
{
|
||||
for(int x=0; x<flow->cols; ++x)
|
||||
{
|
||||
const FloatType squared_magnitude = cv::norm((*flow)(y,x), cv::NORM_L2SQR);
|
||||
if(squared_magnitude > max_squared_magnitude)
|
||||
{
|
||||
max_squared_magnitude = squared_magnitude;
|
||||
}
|
||||
}
|
||||
}
|
||||
return std::sqrt(max_squared_magnitude);
|
||||
}
|
||||
|
||||
FloatType maxPredictedAbsBrightnessChange(const ImagePtr& I, const OpticFlowPtr& flow)
|
||||
{
|
||||
const size_t height = I->rows;
|
||||
const size_t width = I->cols;
|
||||
|
||||
Image Ix, Iy; // horizontal/vertical gradients of I
|
||||
// the factor 1/8 accounts for the scaling introduced by the Sobel filter mask
|
||||
//cv::Sobel(*I, Ix, cv::DataType<ImageFloatType>::type, 1, 0, 3, 1./8.);
|
||||
//cv::Sobel(*I, Iy, cv::DataType<ImageFloatType>::type, 0, 1, 3, 1./8.);
|
||||
|
||||
// the factor 1/32 accounts for the scaling introduced by the Scharr filter mask
|
||||
cv::Scharr(*I, Ix, cv::DataType<ImageFloatType>::type, 1, 0, 1./32.);
|
||||
cv::Scharr(*I, Iy, cv::DataType<ImageFloatType>::type, 0, 1, 1./32.);
|
||||
|
||||
Image Lx, Ly; // horizontal/vertical gradients of log(I). d(logI)/dx = 1/I * dI/dx
|
||||
static const ImageFloatType eps = 1e-3; // small additive term to avoid problems at I=0
|
||||
cv::divide(Ix, *I+eps, Lx);
|
||||
cv::divide(Iy, *I+eps, Ly);
|
||||
|
||||
Image dLdt(height, width);
|
||||
for(int y=0; y<height; ++y)
|
||||
{
|
||||
for(int x=0; x<width; ++x)
|
||||
{
|
||||
// dL/dt ~= - <nablaL, flow>
|
||||
const ImageFloatType dLdt_at_xy =
|
||||
Lx(y,x) * (*flow)(y,x)[0] +
|
||||
Ly(y,x) * (*flow)(y,x)[1]; // "-" sign ignored since we are interested in the absolute value...
|
||||
dLdt(y,x) = std::fabs(dLdt_at_xy);
|
||||
}
|
||||
}
|
||||
double min_dLdt, max_dLdt;
|
||||
int min_idx, max_idx;
|
||||
cv::minMaxIdx(dLdt, &min_dLdt, &max_dLdt,
|
||||
&min_idx, &max_idx);
|
||||
|
||||
return static_cast<FloatType>(max_dLdt);
|
||||
}
|
||||
|
||||
void gaussianBlur(ImagePtr& I, FloatType sigma)
|
||||
{
|
||||
cv::GaussianBlur(*I, *I, cv::Size(15,15), sigma, sigma);
|
||||
}
|
||||
|
||||
CalibrationMatrix calibrationMatrixFromCamera(const Camera::Ptr& camera)
|
||||
{
|
||||
CHECK(camera);
|
||||
const ze::VectorX params = camera->projectionParameters();
|
||||
CalibrationMatrix K;
|
||||
K << params(0), 0, params(2),
|
||||
0, params(1), params(3),
|
||||
0, 0, 1;
|
||||
return K;
|
||||
}
|
||||
|
||||
PointCloud eventsToPointCloud(const Events& events, const Depthmap& depthmap, const ze::Camera::Ptr& camera)
|
||||
{
|
||||
PointCloud pcl_camera;
|
||||
for(const Event& ev : events)
|
||||
{
|
||||
Vector3 X_c = camera->backProject(ze::Keypoint(ev.x,ev.y));
|
||||
X_c[0] /= X_c[2];
|
||||
X_c[1] /= X_c[2];
|
||||
X_c[2] = 1.;
|
||||
const ImageFloatType z = depthmap(ev.y,ev.x);
|
||||
Vector3 P_c = z * X_c;
|
||||
Vector3i rgb;
|
||||
static const Vector3i red(255, 0, 0);
|
||||
static const Vector3i blue(0, 0, 255);
|
||||
rgb = (ev.pol) ? blue : red;
|
||||
PointXYZRGB P_c_intensity(P_c, rgb);
|
||||
pcl_camera.push_back(P_c_intensity);
|
||||
}
|
||||
return pcl_camera;
|
||||
}
|
||||
|
||||
} // namespace event_camera_simulator
|
Reference in New Issue
Block a user