89e250dcba
determined by the area of the polygon
143 lines
3.8 KiB
C++
143 lines
3.8 KiB
C++
#include "polygon_generator.h"
|
|
|
|
#include <cassert>
|
|
#include <cmath>
|
|
|
|
#define MASS_COEF .1
|
|
|
|
static double to_rad(double angle_in_deg) {
|
|
static double PI_180 = M_PI / 180;
|
|
return angle_in_deg * PI_180;
|
|
}
|
|
|
|
polygon
|
|
poly_generate::rectangle(double width, double height, std::string label) {
|
|
assert(width > 0);
|
|
assert(height > 0);
|
|
static const double one_over_twelve = 1. / 12;
|
|
|
|
double mass = MASS_COEF * width * height;
|
|
|
|
return polygon{
|
|
{0, 0},
|
|
0,
|
|
{{-width / 2, -height / 2},
|
|
{-width / 2, height / 2},
|
|
{width / 2, height / 2},
|
|
{width / 2, -height / 2}},
|
|
one_over_twelve * mass * (width * width + height * height),
|
|
mass,
|
|
label};
|
|
}
|
|
|
|
polygon poly_generate::triangle(
|
|
double side1, double side2, double angle, std::string label
|
|
) {
|
|
assert(side1 > 0);
|
|
assert(side2 > 0);
|
|
static const double one_over_36 = 1. / 36;
|
|
double base, height;
|
|
base = side1;
|
|
height = side2 * std::sin(to_rad(angle));
|
|
vec2d points[] = {
|
|
{0, 0},
|
|
{side1, 0},
|
|
{side2 * std::cos(to_rad(angle)), height}};
|
|
|
|
vec2d barycenter = {
|
|
(points[0].x + points[1].x + points[2].x) / 3,
|
|
(points[0].y + points[1].y + points[2].y) / 3,
|
|
};
|
|
|
|
double mass = MASS_COEF * base * height * .5;
|
|
|
|
for (unsigned int i = 0; i < 3; ++i)
|
|
points[i] -= barycenter;
|
|
return polygon{
|
|
{0, 0},
|
|
0,
|
|
{std::begin(points), std::end(points)},
|
|
one_over_36 * mass * base * std::pow(height, 3),
|
|
mass,
|
|
label};
|
|
}
|
|
|
|
static double area_of_triangle(vec2d& a, vec2d& b, vec2d& c) {
|
|
return std::abs(vec2d::cross(c - a, b - a)) / 2;
|
|
}
|
|
|
|
static double area_of_poly(std::vector<vec2d>& points, vec2d& centroid) {
|
|
double area = 0;
|
|
for (int i = 0; i < points.size(); ++i)
|
|
area += area_of_triangle(
|
|
centroid,
|
|
points[i],
|
|
points[(i + 1) % points.size()]
|
|
);
|
|
return area;
|
|
}
|
|
|
|
polygon poly_generate::regular(double radius, uint n_sides, std::string label) {
|
|
assert(n_sides > 2);
|
|
std::vector<vec2d> points;
|
|
points.reserve(n_sides);
|
|
double theta = 2 * M_PI / n_sides;
|
|
|
|
|
|
for (uint i = 0; i < n_sides; i++)
|
|
points.push_back({radius * cos(i * theta), radius * sin(i * theta)});
|
|
|
|
vec2d centroid = {0, 0};
|
|
double mass = MASS_COEF * area_of_poly(points, centroid);
|
|
double l = vec2d::norm(points[1] - points[0]);
|
|
|
|
double sin_, cos_;
|
|
sincos(M_PI / n_sides, &sin_, &cos_);
|
|
double cot = cos_ / sin_;
|
|
|
|
double inertia = mass * l * l / 24 * (1 + 3 * cot * cot);
|
|
return polygon{centroid, 0, points, inertia, mass, label};
|
|
}
|
|
|
|
static double intertia_of_polygon_subtriangle(
|
|
double total_mass, double total_area, vec2d& centroid, vec2d& p1, vec2d& p2
|
|
) {
|
|
double partial_area = area_of_triangle(centroid, p1, p2);
|
|
double partial_mass = total_mass * partial_area / total_area;
|
|
|
|
vec2d CA = p1 - centroid;
|
|
vec2d AB = p2 - p1;
|
|
|
|
return partial_mass / 2
|
|
* (vec2d::norm2(AB) / 3 + vec2d::dot(AB, CA) + vec2d::norm2(CA));
|
|
}
|
|
|
|
static vec2d centroid(std::vector<vec2d>& points) {
|
|
double x = 0, y = 0;
|
|
for (auto& p : points)
|
|
x += p.x, y += p.y;
|
|
|
|
return vec2d{x, y} / points.size();
|
|
}
|
|
|
|
polygon poly_generate::general(std::vector<vec2d> points, std::string label) {
|
|
double intertia = 0;
|
|
vec2d c = centroid(points);
|
|
double area = area_of_poly(points, c);
|
|
double mass = MASS_COEF * area;
|
|
|
|
for (int i = 0; i < points.size(); ++i)
|
|
intertia += intertia_of_polygon_subtriangle(
|
|
mass,
|
|
area,
|
|
c,
|
|
points[i],
|
|
points[(i + 1) % points.size()]
|
|
);
|
|
|
|
for (auto& p : points) // set the center of the polygon to it's centroid
|
|
p -= c;
|
|
|
|
return polygon{{0, 0}, 0, points, intertia, mass, label};
|
|
}
|