flying-balls/balls.c
2021-06-07 13:38:13 +02:00

800 lines
21 KiB
C

#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include <math.h>
#include <time.h>
#include <gdk/gdkkeysyms.h>
#include <gtk/gtk.h>
#define DEFAULT_WIDTH 800
#define DEFAULT_HEIGHT 800
struct ball_face;
struct ball {
double x;
double y;
unsigned int radius;
double v_x;
double v_y;
double angle;
double v_angle;
struct ball_face * face;
};
double delta = 0.01; /* seconds */
unsigned int width = DEFAULT_WIDTH;
unsigned int height = DEFAULT_HEIGHT;
unsigned int radius_min = 5;
unsigned int radius_max = 10;
unsigned int v_max = 100;
unsigned int v_min = 0;
unsigned int v_angle_min = 0;
unsigned int v_angle_max = 100;
struct ball * balls = 0;
unsigned int n_balls = 50;
double g_y = 20;
double g_x = 0;
double clear_alpha = 1.0;
void random_velocity(struct ball * p) {
double r2;
do {
p->v_x = v_min + rand() % (v_max + 1 - v_min);
p->v_y = v_min + rand() % (v_max + 1 - v_min);
r2 = p->v_x*p->v_x + p->v_y*p->v_y;
} while (r2 > v_max*v_max || r2 < v_min*v_min);
}
void balls_init_state () {
srand(time(NULL));
static const unsigned int border = 10;
unsigned int w = width < 2*border ? 1 : width - 2*border;
unsigned int h = height < 2*border ? 1 : height - 2*border;
for (unsigned int i = 0; i < n_balls; ++i) {
balls[i].x = border + rand() % w;
balls[i].y = border + rand() % h;
random_velocity(balls + i);
if (rand() % 2)
balls[i].v_x = -balls[i].v_x;
if (rand() % 2)
balls[i].v_y = -balls[i].v_y;
balls[i].radius = radius_min + rand() % (radius_max + 1 - radius_min);
unsigned int v_angle_360 = (v_angle_min + rand() % (v_angle_max + 1 - v_angle_min)) % 360;
balls[i].v_angle = 2*M_PI*v_angle_360/360;
balls[i].angle = (rand() % 360)*2*M_PI/360;
}
}
void ball_collision (struct ball * p, struct ball * q) {
double dx = q->x - p->x;
double dy = q->y - p->y;
double d2 = dx*dx + dy*dy;
double r = p->radius + q->radius;
if (d2 <= r*r) {
double dv_x = q->v_x - p->v_x;
double dv_y = q->v_y - p->v_y;
double mp = p->radius * p->radius;
double mq = q->radius * q->radius;
double f = dv_x*dx + dv_y*dy;
if (f < 0) {
f /= d2*(mp + mq);
p->v_x += 2*mq*f*dx;
p->v_y += 2*mq*f*dy;
q->v_x -= 2*mp*f*dx;
q->v_y -= 2*mp*f*dy;
}
}
}
#if 0
static void tangential_friction1(double u, double p, double r, double * v, double * q) {
static const double a = 0.0;
/*
* 2 2 2 2 2 2
* sqrt((6 - 2 a ) u + 4 a p r u + (3 - 2 a ) p r ) + a u - a p r
* v = -----------------------------------------------------------------
* 3
*
* 2 2 2 2 2 2
* sqrt((6 - 2 a ) u + 4 a p r u + (3 - 2 a ) p r ) - 2 a u + 2 a p r
* q = ---------------------------------------------------------------------
* 3 r
*/
double a2 = a*a;
double u2 = u*u;
double p2 = p*p;
double r2 = r*r;
double sr = sqrt((6 - 2*a2)*u2 + 4*a2*p*r*u + (3 - 2*a2)*p2*r2);
*v = (sr + a*u - a*p*r)/3;
*q = (sr - 2*a*u + 2*a*p*r)/(3*r);
}
static void tangential_friction2(double u, double p, double r, double * v, double * q) {
static const double a = 1.0;
/*
* 2 2 2 2 2 2
* sqrt((6 - 2 a ) u + 4 a p r u + (3 - 2 a ) p r ) + a u + a p r
* v = -----------------------------------------------------------------
* 3
*
* 2 2 2 2 2 2
* sqrt((6 - 2 a ) u + 4 a p r u + (3 - 2 a ) p r ) - 2 a u - 2 a p r
* q = ---------------------------------------------------------------------
* 3 r
*/
double a2 = a*a;
double u2 = u*u;
double p2 = p*p;
double r2 = r*r;
double sr = sqrt((6 - 2*a2)*u2 + 4*a2*p*r*u + (3 - 2*a2)*p2*r2);
*v = (sr + a*u + a*p*r)/3;
*q = (sr - 2*a*u - 2*a*p*r)/(3*r);
}
static void tangential_friction3(double u, double p, double r, double * v_ptr, double * q_ptr) {
static const double a = 0.9;
double v, q;
v = (1-a)*u + a*p*r;
/* 2 2 2 2 2 2
* sqrt((4 a - 2 a ) u + (4 a - 4 a) p r u + (1 - 2 a ) p r )
* q = -------------------------------------------------------------
* r
*/
q = sqrt(2*a*(2 - a)*u*u + 4*a*(a - 1)*p*r*u + (1 - 2*a*a)*p*p*r*r)/r;
if (p*r > v)
q = -q;
*v_ptr = v;
*q_ptr = q;
}
#endif
void ball_update_state (struct ball * p) {
p->x += delta*p->v_x + delta*delta*g_x/2.0;
p->v_x += delta*g_x;
p->y += delta*p->v_y + delta*delta*g_y/2.0;
p->v_y += delta*g_y;
if (p->x + p->radius > width) { /* right wall */
if (p->v_x > 0) {
p->x -= p->x + p->radius - width;
p->v_x = -p->v_x;
#if 0
/* tangential friction */
tangential_friction(p->v_y, -p->v_angle, p->radius, &(p->v_y), &(p->v_angle));
#endif
}
} else if (p->x < p->radius) { /* left wall */
if (p->v_x < 0) {
p->x += p->radius - p->x;
p->v_x = -p->v_x;
#if 0
/* tangential friction */
tangential_friction(p->v_y, p->v_angle, p->radius, &(p->v_y), &(p->v_angle));
#endif
}
}
if (p->y + p->radius > height) { /* bottom wall */
if (p->v_y > 0) {
p->y -= p->y + p->radius - height;
p->v_y = -p->v_y;
#if 0
/* tangential friction */
tangential_friction3(p->v_x, p->v_angle, p->radius, &(p->v_x), &(p->v_angle));
#endif
}
} else if (p->y < p->radius) { /* top wall */
if (p->v_y < 0) {
p->y += p->radius - p->y;
p->v_y = -p->v_y;
#if 0
/* tangential friction */
tangential_friction(p->v_x, -p->v_angle, p->radius, &(p->v_x), &(p->v_angle));
p->v_angle = -p->v_angle;
#endif
}
}
p->angle += delta*p->v_angle;
while (p->angle >= 2*M_PI)
p->angle -= 2*M_PI;
while (p->angle < 0)
p->angle += 2*M_PI;
}
void reposition_within_borders () {
for(int i = 0; i < n_balls; ++i) {
struct ball * p = balls + i;
if (p->x < p->radius)
p->x = p->radius;
else if (p->x + p->radius > width)
p->x = width - p->radius;
if (p->y < p->radius)
p->y = p->radius;
else if (p->y + p->radius > height)
p->y = height - p->radius;
}
}
void movement_and_borders () {
for(int i = 0; i < n_balls; ++i)
ball_update_state(balls + i);
}
/* Collision check with index
*/
struct rectangle {
double min_x; /* left */
double min_y; /* bottom */
double max_x; /* right */
double max_y; /* top */
};
struct bt_node {
struct ball * ball;
struct rectangle r;
struct bt_node * left;
struct bt_node * right;
};
struct bt_node * c_index = 0;
static struct bt_node * c_index_init_node(struct bt_node * n, struct ball * b) {
n->ball = b;
n->r.min_x = b->x - b->radius;
n->r.min_y = b->y - b->radius;
n->r.max_x = b->x + b->radius;
n->r.max_y = b->y + b->radius;
n->left = 0;
n->right = 0;
return n;
}
static void c_index_add_ball(struct bt_node * n, const struct ball * b) {
if (n->r.min_x > b->x - b->radius)
n->r.min_x = b->x - b->radius;
if (n->r.min_y > b->y - b->radius)
n->r.min_y = b->y - b->radius;
if (n->r.max_x < b->x + b->radius)
n->r.max_x = b->x + b->radius;
if (n->r.max_y < b->y + b->radius)
n->r.max_y = b->y + b->radius;
}
static void c_index_insert(struct bt_node * t, struct bt_node * n, struct ball * b) {
double w = width;
double h = height;
double ref_x = 0.0;
double ref_y = 0.0;
c_index_init_node(n, b);
for (;;) {
c_index_add_ball(t, b);
if (w > h) { /* horizontal split */
if (b->x <= t->ball->x) {
if (t->left) {
w = t->ball->x - ref_x;
t = t->left;
} else {
t->left = n;
return;
}
} else {
if (t->right) {
w -= t->ball->x - ref_x;
ref_x = t->ball->x;
t = t->right;
} else {
t->right = n;
return;
}
}
} else { /* vertical split */
if (b->y <= t->ball->y) {
if (t->left) {
h = t->ball->y - ref_y;
t = t->left;
} else {
t->left = n;
return;
}
} else {
if (t->right) {
h -= t->ball->y - ref_y;
ref_y = t->ball->y;
t = t->right;
} else {
t->right = n;
return;
}
}
}
}
}
void c_index_build() {
c_index_init_node(c_index, balls);
for(int i = 1; i < n_balls; ++i)
c_index_insert(c_index, c_index + i, balls + i);
}
struct bt_node ** c_index_stack = 0;
unsigned int c_index_stack_top = 0;
static void c_index_stack_clear() {
c_index_stack_top = 0;
}
static void c_index_stack_push(struct bt_node * n) {
c_index_stack[c_index_stack_top++] = n;
}
static struct bt_node * c_index_stack_pop() {
if (c_index_stack_top > 0)
return c_index_stack[--c_index_stack_top];
else
return 0;
}
static int c_index_ball_in_rectangle(const struct bt_node * n, const struct ball * b) {
return n->r.min_x <= b->x + b->radius
&& n->r.max_x >= b->x - b->radius
&& n->r.min_y <= b->y + b->radius
&& n->r.max_y >= b->y - b->radius;
}
static int c_index_must_check(const struct bt_node * n, const struct ball * b) {
return n != 0 && n->ball < b && c_index_ball_in_rectangle(n, b);
}
void c_index_check_collisions() {
for(struct ball * b = balls + 1; b < balls + n_balls; ++b) {
c_index_stack_clear();
struct bt_node * n = c_index;
do {
ball_collision(n->ball, b);
if (c_index_must_check(n->left, b)) {
if (c_index_must_check(n->right, b))
c_index_stack_push(n->right);
n = n->left;
} else if (c_index_must_check(n->right, b)) {
n = n->right;
} else {
n = c_index_stack_pop();
}
} while (n);
}
}
int c_index_init() {
if (!c_index)
c_index = malloc(sizeof(struct bt_node) * n_balls);
if (!c_index)
return 0;
if (!c_index_stack)
c_index_stack = malloc(sizeof(struct bt_node *) * n_balls);
if (!c_index_stack)
return 0;
return 1;
}
void c_index_destroy() {
if (c_index)
free(c_index);
if (c_index_stack)
free(c_index_stack);
c_index = 0;
c_index_stack = 0;
}
/* Trivial collision check
*/
void check_collisions_simple () {
for(int i = 0; i < n_balls; ++i)
for(int j = i + 1; j < n_balls; ++j)
ball_collision(balls + i, balls + j);
}
void check_collisions_with_index () {
c_index_build();
c_index_check_collisions();
}
void (*check_collisions)() = 0;
void update_state () {
if (check_collisions)
check_collisions();
movement_and_borders();
}
/* Graphics System
*/
GtkWidget * window;
GtkWidget * canvas;
int gravity_vector_countdown = 0;
int gravity_vector_init = 300;
void draw_gravity_vector(cairo_t * cr) {
if (gravity_vector_countdown != 0) {
cairo_new_path(cr);
cairo_move_to(cr, width/2, height/2);
cairo_line_to(cr, width/2 + g_x, height/2 + g_y);
cairo_set_source_rgb(cr, 1.0, 1.0, 1.0);
cairo_set_line_width(cr, 1.0);
cairo_stroke(cr);
cairo_arc(cr, width/2 + g_x, height/2 + g_y, 3, 0, 2*M_PI);
cairo_fill(cr);
if (gravity_vector_countdown > 0)
--gravity_vector_countdown;
}
}
const char * face_filename = 0;
int face_rotation = 0;
static const double linear_rotation_unit = 2.0;
unsigned int faces_count;
struct ball_face ** faces;
struct ball_face {
unsigned int rotations;
cairo_surface_t ** c_faces;
};
static double random_color_component() {
return 1.0*(rand() % 200 + 56)/255;
};
struct ball_face * new_ball_face(unsigned int radius, cairo_surface_t * face, int rotation) {
struct ball_face * f = malloc(sizeof(struct ball_face));
if (!f)
return 0;
if (face && rotation) {
f->rotations = 2*M_PI * radius / linear_rotation_unit;
} else {
f->rotations = 1;
}
f->c_faces = malloc(sizeof(cairo_surface_t *)*f->rotations);
if (!f->c_faces) {
free(f);
return 0;
}
for (int i = 0; i < f->rotations; ++i) {
f->c_faces[i] = gdk_window_create_similar_surface(gtk_widget_get_window(window),
CAIRO_CONTENT_COLOR_ALPHA,
2*radius, 2*radius);
assert(f->c_faces[i]);
cairo_t * ball_cr = cairo_create(f->c_faces[i]);
cairo_translate(ball_cr, radius, radius);
cairo_arc(ball_cr, 0.0, 0.0, radius, 0, 2 * M_PI);
cairo_clip(ball_cr);
if (face) {
int face_x_offset = cairo_image_surface_get_width (face) / 2;
int face_y_offset = cairo_image_surface_get_height (face) / 2;
cairo_rotate(ball_cr, i*2*M_PI/f->rotations);
cairo_scale (ball_cr, 1.0 * radius / face_x_offset, 1.0 * radius / face_y_offset);
cairo_set_source_surface(ball_cr, face, -face_x_offset, -face_y_offset);
cairo_paint(ball_cr);
} else {
cairo_pattern_t *pat;
pat = cairo_pattern_create_radial (-0.2*radius, -0.2*radius, 0.2*radius,
-0.2*radius, -0.2*radius, 1.2*radius);
double col_r = random_color_component();
double col_g = random_color_component();
double col_b = random_color_component();
cairo_pattern_add_color_stop_rgba (pat, 0, col_r, col_g, col_b, 1);
cairo_pattern_add_color_stop_rgba (pat, 1, col_r/3, col_g/3, col_b/3, 1);
cairo_set_source (ball_cr, pat);
cairo_arc (ball_cr, 0.0, 0.0, radius, 0, 2 * M_PI);
cairo_fill (ball_cr);
}
cairo_surface_flush(f->c_faces[i]);
cairo_destroy(ball_cr);
}
return f;
}
void init_graphics() {
cairo_surface_t * face_surface = 0;
if (face_filename) {
face_surface = cairo_image_surface_create_from_png (face_filename);
if (cairo_surface_status(face_surface) != CAIRO_STATUS_SUCCESS) {
cairo_surface_destroy (face_surface);
face_surface = 0;
fprintf(stderr, "could not create surface from PNG file %s\n", face_filename);
}
}
if (face_surface) {
faces_count = radius_max + 1 - radius_min;
faces = malloc(sizeof(struct ball_face *)*faces_count);
for (unsigned int i = 0; i < faces_count; ++i)
faces[i] = 0;
for(struct ball * b = balls; b != balls + n_balls; ++b) {
unsigned int r_idx = b->radius - radius_min;
if (!faces[r_idx])
faces[r_idx] = new_ball_face(b->radius, face_surface, face_rotation);
b->face = faces[r_idx];
}
cairo_surface_destroy (face_surface);
} else {
faces_count = n_balls;
faces = malloc(sizeof(struct ball_face *)*faces_count);
for (unsigned int i = 0; i < n_balls; ++i)
balls[i].face = faces[i] = new_ball_face(balls[i].radius, 0, face_rotation);
}
}
void destroy_graphics() {
if (!faces)
return;
for (int i = 0; i < faces_count; ++i) {
if (faces[i]) {
if (faces[i]->c_faces) {
for (unsigned int j = 0; j < faces[i]->rotations; ++j)
cairo_surface_destroy(faces[i]->c_faces[j]);
free(faces[i]->c_faces);
}
free(faces[i]);
}
}
free(faces);
faces = 0;
faces_count = 0;
}
void draw_balls_onto_window () {
/* clear pixmap */
GdkWindow * window = gtk_widget_get_window(canvas);
cairo_region_t * c_region = cairo_region_create();
GdkDrawingContext * d_context = gdk_window_begin_draw_frame (window, c_region);
cairo_t * cr = gdk_drawing_context_get_cairo_context (d_context);
cairo_set_source_rgba(cr, 0.0, 0.0, 0.0, clear_alpha);
cairo_paint(cr);
draw_gravity_vector(cr);
/* draw balls */
for(const struct ball * b = balls; b != balls + n_balls; ++b) {
cairo_save(cr);
cairo_translate(cr, b->x - b->radius, b->y - b->radius);
unsigned int face_id;
if (b->face->rotations == 1)
face_id = 0;
else {
face_id = b->face->rotations*b->angle/(2*M_PI);
assert(face_id < b->face->rotations);
if (face_id >= b->face->rotations)
face_id %= b->face->rotations;
}
cairo_set_source_surface(cr, b->face->c_faces[face_id], 0, 0);
cairo_paint(cr);
cairo_restore(cr);
}
gdk_window_end_draw_frame(window, d_context);
cairo_region_destroy(c_region);
}
gint configure_event (GtkWidget *widget, GdkEventConfigure * event) {
if (width == gtk_widget_get_allocated_width(widget) && height == gtk_widget_get_allocated_height(widget))
return FALSE;
width = gtk_widget_get_allocated_width(widget);
height = gtk_widget_get_allocated_height(widget);
reposition_within_borders();
return TRUE;
}
gint keyboard_input (GtkWidget *widget, GdkEventKey *event) {
if (event->type != GDK_KEY_PRESS)
return FALSE;
switch(event->keyval) {
case GDK_KEY_Up:
g_y -= 10;
gravity_vector_countdown = gravity_vector_init;
break;
case GDK_KEY_Down:
g_y += 10;
gravity_vector_countdown = gravity_vector_init;
break;
case GDK_KEY_Left:
g_x -= 10;
gravity_vector_countdown = gravity_vector_init;
break;
case GDK_KEY_Right:
g_x += 10;
gravity_vector_countdown = gravity_vector_init;
break;
case GDK_KEY_G:
case GDK_KEY_g:
gravity_vector_countdown = gravity_vector_init;
break;
case GDK_KEY_Q:
case GDK_KEY_q:
gtk_main_quit();
break;
default:
return FALSE;
}
return TRUE;
}
gboolean expose_event (GtkWidget *widget, GdkEventExpose *event, gpointer data) {
draw_balls_onto_window();
return TRUE;
}
void destroy_window (void) {
gtk_main_quit();
}
void print_usage (const char * progname) {
fprintf(stderr,
"usage: %s [options...]\n"
"options:\n"
"\t<width>x<height>\n"
"\tn=<number of balls>\n"
"\tfx=<x-force>\n"
"\tfy=<y-force>\n"
"\tradius=<min-radius>-<max-radius>\n"
"\tv=<min-velocity>-<max-velocity>\n"
"\tdelta=<frame-delta-time>\n"
"\tface=<filename>\n"
"\tclear=<clear-alpha>\n"
"\tstats=<sample-count> :: rendering timing statitstics (0=disabled, default)\n"
"\tcollisions=<C> :: n=no collisions, s=simple, i=index\n"
"\t-r :: activate face rotation\n",
progname);
}
unsigned int stats_sampling = 0;
gboolean timeout (gpointer user_data) {
guint64 start = 0, elapsed_usec;
if (stats_sampling > 0)
start = g_get_monotonic_time ();
update_state();
draw_balls_onto_window();
if (stats_sampling > 0) {
elapsed_usec = g_get_monotonic_time () - start;
static guint64 elapsed_usec_total = 0;
static unsigned int samples = 0;
if (samples == stats_sampling) {
printf("\rframe rendering: time = %lu usec, max freq = %.2f (avg over %u samples) ", elapsed_usec_total / samples, (1000000.0 * samples) / elapsed_usec_total, samples);
fflush(stdout);
samples = 0;
elapsed_usec_total = 0;
}
++samples;
elapsed_usec_total += elapsed_usec;
}
return TRUE;
}
int main (int argc, const char *argv[]) {
int w = DEFAULT_WIDTH;
int h = DEFAULT_HEIGHT;
for (int i = 1; i < argc; ++i) {
if (sscanf(argv[i], "%dx%d", &w, &h) == 2)
continue;
if (sscanf(argv[i], "n=%u", &n_balls) == 1)
continue;
if (sscanf(argv[i], "fx=%lf", &g_x) == 1)
continue;
if (sscanf(argv[i], "fy=%lf", &g_y) == 1)
continue;
if (sscanf(argv[i], "radius=%u-%u", &radius_min, &radius_max) == 2)
continue;
if (sscanf(argv[i], "v=%u-%u", &v_min, &v_max) == 2)
continue;
if (sscanf(argv[i], "delta=%lf", &delta) == 1)
continue;
if (strncmp(argv[i], "face=", 5) == 0) {
face_filename = argv[i] + 5;
continue;
}
if (sscanf(argv[i], "clear=%lf", &clear_alpha) == 1)
continue;
if (sscanf(argv[i], "stats=%u", &stats_sampling) == 1)
continue;
char collisions;
if (sscanf(argv[i], "collisions=%c", &collisions) == 1) {
switch (collisions) {
case 'i':
case 'I':
check_collisions = check_collisions_with_index;
continue;
case '0':
case 'N':
case 'n':
check_collisions = 0;
continue;
case 's':
case 'S':
check_collisions = check_collisions_simple;
continue;
}
}
if (strcmp(argv[i], "-r") == 0) {
face_rotation = 1;
continue;
}
print_usage(argv[0]);
return 1;
}
balls = malloc(sizeof(struct ball)*n_balls);
assert(balls);
assert(c_index_init());
balls_init_state();
gtk_init(0, 0);
window = gtk_window_new (GTK_WINDOW_TOPLEVEL);
gtk_window_set_default_size(GTK_WINDOW(window), width, height);
gtk_window_set_position(GTK_WINDOW(window), GTK_WIN_POS_CENTER);
gtk_window_set_title(GTK_WINDOW(window), "Game");
g_signal_connect(window, "destroy", G_CALLBACK(destroy_window), NULL);
g_signal_connect (G_OBJECT (window), "delete-event", G_CALLBACK(destroy_window), NULL);
g_signal_connect(window, "key-press-event", G_CALLBACK(keyboard_input), NULL);
gtk_widget_set_events (window, GDK_EXPOSURE_MASK | GDK_BUTTON_PRESS_MASK | GDK_KEY_PRESS_MASK);
canvas = gtk_drawing_area_new ();
g_signal_connect (G_OBJECT (canvas), "configure-event", G_CALLBACK(configure_event), NULL);
gtk_container_add (GTK_CONTAINER (window), canvas);
g_timeout_add (delta * 1000, timeout, canvas);
gtk_widget_show_all(window);
init_graphics();
gtk_main();
if (stats_sampling > 0)
printf("\n");
destroy_graphics();
c_index_destroy();
free(balls);
return 0;
}