#include #include #include #include #include #include #include #include #define DEFAULT_WIDTH 800 #define DEFAULT_HEIGHT 800 struct ball { double x; double y; unsigned int radius; double v_x; double v_y; guchar rgb_channels[3]; }; static double delta = 0.01; /* seconds */ static unsigned int width = DEFAULT_WIDTH; static unsigned int height = DEFAULT_HEIGHT; static unsigned int radius_min = 5; static unsigned int radius_max = 10; static unsigned int v_max = 100; static unsigned int v_min = 0; struct ball * balls = 0; unsigned int n_balls = 50; static double g_y = 20; static double g_x = 0; void random_velocity(struct ball * p) { double r2; do { p->v_x = v_min + rand() % (v_max + 1 - v_min); p->v_y = v_min + rand() % (v_max + 1 - v_min); r2 = p->v_x*p->v_x + p->v_y*p->v_y; } while (r2 > v_max*v_max || r2 < v_min*v_min); } void balls_init_state () { srand(time(NULL)); static const unsigned int border = 10; unsigned int w = width < 2*border ? 1 : width - 2*border; unsigned int h = height < 2*border ? 1 : height - 2*border; for (unsigned int i = 0; i < n_balls; ++i) { balls[i].x = border + rand() % w; balls[i].y = border + rand() % h; random_velocity(balls + i); if (rand() % 2) balls[i].v_x = -balls[i].v_x; if (rand() % 2) balls[i].v_y = -balls[i].v_y; balls[i].radius = radius_min + rand() % (radius_max + 1 - radius_min); balls[i].rgb_channels[0] = rand() % 256; balls[i].rgb_channels[1] = rand() % 256; balls[i].rgb_channels[2] = rand() % 256; } } static void ball_collision (struct ball * p, struct ball * q) { double dx = q->x - p->x; double dy = q->y - p->y; double d2 = dx*dx + dy*dy; double r = p->radius + q->radius; if (d2 <= r*r) { double dv_x = q->v_x - p->v_x; double dv_y = q->v_y - p->v_y; double mp = p->radius * p->radius; double mq = q->radius * q->radius; double f = dv_x*dx + dv_y*dy; if (f < 0) { f /= d2*(mp + mq); p->v_x += 2*mq*f*dx; p->v_y += 2*mq*f*dy; q->v_x -= 2*mp*f*dx; q->v_y -= 2*mp*f*dy; } } } static void ball_update_state (struct ball * p) { p->x += delta*p->v_x + delta*delta*g_x/2.0; p->v_x += delta*g_x; p->y += delta*p->v_y + delta*delta*g_y/2.0; p->v_y += delta*g_y; if (p->x + p->radius > width) { if (p->v_x > 0) { p->x -= p->x + p->radius - width; p->v_x = -p->v_x; } } else if (p->x < p->radius) { if (p->v_x < 0) { p->x += p->radius - p->x; p->v_x = -p->v_x; } } if (p->y + p->radius > height) { if (p->v_y > 0) { p->y -= p->y + p->radius - height; p->v_y = -p->v_y; } } else if (p->y < p->radius) { if (p->v_y < 0) { p->y += p->radius - p->y; p->v_y = -p->v_y; } } } static void update_state () { for(int i = 0; i < n_balls; ++i) for(int j = i + 1; j < n_balls; ++j) ball_collision(balls + i, balls + j); for(int i = 0; i < n_balls; ++i) ball_update_state(balls + i); } static GtkWidget * window; static cairo_t * cr = 0; const char * face_filename = 0; cairo_surface_t * face_surface = 0; int face_x_offset, face_y_offset; static void draw_gravity_vector() { cairo_new_path(cr); cairo_move_to(cr, width/2, height/2); cairo_line_to(cr, width/2 + g_x, height/2 + g_y); cairo_set_source_rgb(cr, 1.0, 1.0, 1.0); cairo_set_line_width(cr, 1.0); cairo_stroke(cr); cairo_arc(cr, width/2 + g_x, height/2 + g_y, 3, 0, 2*M_PI); cairo_fill(cr); } static void draw_balls_onto_window () { if (!cr) cr = gdk_cairo_create(window->window); /* clear pixmap */ cairo_set_source_rgba(cr, 0.0, 0.0, 0.0, 1.0); cairo_paint(cr); draw_gravity_vector(); /* draw balls */ for(int i = 0; i < n_balls; ++i) { if (face_surface) { cairo_save(cr); cairo_translate(cr, balls[i].x, balls[i].y); cairo_arc(cr, 0.0, 0.0, balls[i].radius, 0, 2 * M_PI); cairo_clip(cr); cairo_set_source_rgb(cr, 1.0*balls[i].rgb_channels[0]/255, 1.0*balls[i].rgb_channels[1]/255, 1.0*balls[i].rgb_channels[2]/255); cairo_paint(cr); cairo_scale (cr, 1.0 * balls[i].radius / face_x_offset, 1.0 * balls[i].radius / face_y_offset); cairo_set_source_surface(cr, face_surface, -face_x_offset, -face_y_offset); cairo_paint(cr); cairo_restore(cr); } else { cairo_set_source_rgb(cr, 1.0*balls[i].rgb_channels[0]/255, 1.0*balls[i].rgb_channels[1]/255, 1.0*balls[i].rgb_channels[2]/255); cairo_arc(cr, balls[i].x, balls[i].y, balls[i].radius, 0, 2 * M_PI); cairo_fill(cr); } } } static gint resize_event (GtkWidget *widget, GdkEventConfigure * event) { if (width == widget->allocation.width && height == widget->allocation.height) return FALSE; width = widget->allocation.width; height = widget->allocation.height; if (cr) { cairo_destroy(cr); cr = gdk_cairo_create(window->window); } draw_balls_onto_window(); return TRUE; } static gint keyboard_input (GtkWidget *widget, GdkEventKey *event) { if (event->type != GDK_KEY_PRESS) return FALSE; switch(event->keyval) { case GDK_KEY_Up: g_y -= 10; break; case GDK_KEY_Down: g_y += 10; break; case GDK_KEY_Left: g_x -= 10; break; case GDK_KEY_Right: g_x += 10; break; case GDK_KEY_F: case GDK_KEY_f: g_x = rand() % 201 - 100; g_y = rand() % 201 - 100; break; case GDK_KEY_Q: case GDK_KEY_q: gtk_main_quit(); break; default: return FALSE; } return TRUE; } static gboolean expose_event (GtkWidget *widget, GdkEventExpose *event, gpointer data) { return TRUE; } static void destroy_window (void) { gtk_main_quit(); if (cr) { cairo_destroy(cr); cr = 0; } } void print_usage (const char * progname) { fprintf(stderr, "usage: %s [options...]\n" "options:\n" "\tx\n" "\tn=\n" "\tfx=\n" "\tfy=\n" "\tradius=-\n" "\tv=-\n" "\tdelta=\n", progname); } gboolean timeout (gpointer user_data) { guint64 start = g_get_monotonic_time (); update_state(); draw_balls_onto_window(); guint64 elapsed_usec = g_get_monotonic_time () - start; static guint64 elapsed_usec_total = 0; static unsigned int samples = 0; if (samples == 30) { printf("\rtime for one frame: %lu usec (avg over %u samples) ", elapsed_usec_total / samples, samples); fflush(stdout); samples = 0; elapsed_usec_total = 0; } ++samples; elapsed_usec_total += elapsed_usec; return TRUE; } void define_face_surface(const char * filename) { face_surface = cairo_image_surface_create_from_png (filename); switch (cairo_surface_status(face_surface)) { case CAIRO_STATUS_SUCCESS: face_x_offset = cairo_image_surface_get_width (face_surface) / 2; face_y_offset = cairo_image_surface_get_height (face_surface) / 2; break; default: cairo_surface_destroy (face_surface); face_surface = 0; fprintf(stderr, "could not create sorfece from PNG file %s\n", filename); } } int main (int argc, const char *argv[]) { int w = DEFAULT_WIDTH; int h = DEFAULT_HEIGHT; for (int i = 1; i < argc; ++i) { if (sscanf(argv[i], "%dx%d", &w, &h) == 2) continue; if (sscanf(argv[i], "n=%u", &n_balls) == 1) continue; if (sscanf(argv[i], "fx=%lf", &g_x) == 1) continue; if (sscanf(argv[i], "fy=%lf", &g_y) == 1) continue; if (sscanf(argv[i], "radius=%u-%u", &radius_min, &radius_max) == 2) continue; if (sscanf(argv[i], "v=%u-%u", &v_min, &v_max) == 2) continue; if (sscanf(argv[i], "delta=%lf", &delta) == 1) continue; if (strncmp(argv[i], "face=", 5) == 0) { define_face_surface(argv[i] + 5); continue; } print_usage(argv[0]); return 1; } balls = malloc(sizeof(struct ball)*n_balls); assert(balls); balls_init_state(); gtk_init(0, 0); window = gtk_window_new(GTK_WINDOW_TOPLEVEL); assert(window); gtk_window_set_default_size(GTK_WINDOW(window), w, h); gtk_window_set_position(GTK_WINDOW(window), GTK_WIN_POS_CENTER); gtk_window_set_title(GTK_WINDOW(window), "Balls"); g_signal_connect(window, "destroy", G_CALLBACK(destroy_window), NULL); g_signal_connect(window, "expose-event", G_CALLBACK(expose_event), NULL); g_signal_connect(window, "configure_event", G_CALLBACK(resize_event), NULL); g_signal_connect(window, "key_press_event", G_CALLBACK(keyboard_input), NULL); gtk_widget_set_events (window, GDK_EXPOSURE_MASK | GDK_BUTTON_PRESS_MASK | GDK_KEY_PRESS_MASK); g_timeout_add (delta * 1000, timeout, window); gtk_widget_show_all(window); gtk_main(); free(balls); return 0; }