#include #include #include #include #include #include #include #define DEFAULT_WIDTH 800 #define DEFAULT_HEIGHT 800 #include "balls.h" #include "c_index.h" double delta = 0.01; /* seconds */ unsigned int width = DEFAULT_WIDTH; unsigned int height = DEFAULT_HEIGHT; unsigned int radius_min = 5; unsigned int radius_max = 10; unsigned int v_max = 100; unsigned int v_min = 0; unsigned int v_angle_min = 0; unsigned int v_angle_max = 100; struct ball * balls = 0; unsigned int n_balls = 50; double g_y = 20; double g_x = 0; double clear_alpha = 1.0; void random_velocity(struct ball * p) { double r2; do { p->v_x = v_min + rand() % (v_max + 1 - v_min); p->v_y = v_min + rand() % (v_max + 1 - v_min); r2 = p->v_x*p->v_x + p->v_y*p->v_y; } while (r2 > v_max*v_max || r2 < v_min*v_min); } struct ball spaceship; double spaceship_thrust = 0; int spaceship_thrust_countdown = 0; int spaceship_thrust_init = 50; void spaceship_init_state () { spaceship.x = width/2; spaceship.y = height/2; spaceship.radius = 15; spaceship.v_x = 0; spaceship.v_y = 0; spaceship.angle = 0; spaceship.v_angle = 0; } void balls_init_state () { srand(time(NULL)); static const unsigned int border = 10; unsigned int w = width < 2*border ? 1 : width - 2*border; unsigned int h = height < 2*border ? 1 : height - 2*border; for (unsigned int i = 0; i < n_balls; ++i) { balls[i].x = border + rand() % w; balls[i].y = border + rand() % h; random_velocity(balls + i); if (rand() % 2) balls[i].v_x = -balls[i].v_x; if (rand() % 2) balls[i].v_y = -balls[i].v_y; balls[i].radius = radius_min + rand() % (radius_max + 1 - radius_min); unsigned int v_angle_360 = (v_angle_min + rand() % (v_angle_max + 1 - v_angle_min)) % 360; balls[i].v_angle = 2*M_PI*v_angle_360/360; balls[i].angle = (rand() % 360)*2*M_PI/360; } } void ball_elastic_collision (struct ball * p, struct ball * q) { double dx = q->x - p->x; double dy = q->y - p->y; double d2 = dx*dx + dy*dy; double r = p->radius + q->radius; if (d2 <= r*r) { double dv_x = q->v_x - p->v_x; double dv_y = q->v_y - p->v_y; double mp = p->radius * p->radius; double mq = q->radius * q->radius; double f = dv_x*dx + dv_y*dy; if (f < 0) { f /= d2*(mp + mq); p->v_x += 2*mq*f*dx; p->v_y += 2*mq*f*dy; q->v_x -= 2*mp*f*dx; q->v_y -= 2*mp*f*dy; } } } void ball_update_state (struct ball * p) { p->x += delta*p->v_x + delta*delta*g_x/2.0; p->v_x += delta*g_x; p->y += delta*p->v_y + delta*delta*g_y/2.0; p->v_y += delta*g_y; if (p->x + p->radius > width) { /* right wall */ if (p->v_x > 0) { p->x -= p->x + p->radius - width; p->v_x = -p->v_x; } } else if (p->x < p->radius) { /* left wall */ if (p->v_x < 0) { p->x += p->radius - p->x; p->v_x = -p->v_x; } } if (p->y + p->radius > height) { /* bottom wall */ if (p->v_y > 0) { p->y -= p->y + p->radius - height; p->v_y = -p->v_y; } } else if (p->y < p->radius) { /* top wall */ if (p->v_y < 0) { p->y += p->radius - p->y; p->v_y = -p->v_y; } } p->angle += delta*p->v_angle; while (p->angle >= 2*M_PI) p->angle -= 2*M_PI; while (p->angle < 0) p->angle += 2*M_PI; } void spaceship_update_state () { if (spaceship_thrust > 0) { double fx = cos(spaceship.angle)*spaceship_thrust*4.0; double fy = sin(spaceship.angle)*spaceship_thrust*4.0; spaceship.x += delta*delta*fx/2.0; spaceship.v_x += delta*fx; spaceship.y += delta*delta*fy/2.0; spaceship.v_y += delta*fy; if (spaceship_thrust_countdown > 0) --spaceship_thrust_countdown; else spaceship_thrust = 0; } ball_update_state(&spaceship); } void reposition_within_borders () { for(int i = 0; i < n_balls; ++i) { struct ball * p = balls + i; if (p->x < p->radius) p->x = p->radius; else if (p->x + p->radius > width) p->x = width - p->radius; if (p->y < p->radius) p->y = p->radius; else if (p->y + p->radius > height) p->y = height - p->radius; } } void movement_and_borders () { for(int i = 0; i < n_balls; ++i) ball_update_state(balls + i); spaceship_update_state(); } /* Trivial collision check */ void check_collisions_simple () { for(int i = 0; i < n_balls; ++i) for(int j = i + 1; j < n_balls; ++j) ball_elastic_collision(balls + i, balls + j); for(int j = 0; j < n_balls; ++j) ball_elastic_collision(&spaceship, balls + j); } void check_collisions_with_index () { c_index_build(); c_index_check_collisions(ball_elastic_collision); } void (*check_collisions)() = 0; void update_state () { if (check_collisions) check_collisions(); movement_and_borders(); } /* Graphics System */ GtkWidget * window; GtkWidget * canvas; int gravity_vector_countdown = 0; int gravity_vector_init = 300; void draw_gravity_vector(cairo_t * cr) { if (gravity_vector_countdown != 0) { cairo_new_path(cr); cairo_move_to(cr, width/2, height/2); cairo_line_to(cr, width/2 + g_x, height/2 + g_y); cairo_set_source_rgb(cr, 1.0, 1.0, 1.0); cairo_set_line_width(cr, 1.0); cairo_stroke(cr); cairo_arc(cr, width/2 + g_x, height/2 + g_y, 3, 0, 2*M_PI); cairo_fill(cr); if (gravity_vector_countdown > 0) --gravity_vector_countdown; } } const char * face_filename = 0; int face_rotation = 0; static const double linear_rotation_unit = 2.0; unsigned int faces_count; struct ball_face ** faces; struct ball_face { unsigned int rotations; cairo_surface_t ** c_faces; }; static double random_color_component() { return 1.0*(rand() % 200 + 56)/255; }; struct ball_face * new_ball_face(unsigned int radius, cairo_surface_t * face, int rotation) { struct ball_face * f = malloc(sizeof(struct ball_face)); if (!f) return 0; if (face && rotation) { f->rotations = 2*M_PI * radius / linear_rotation_unit; } else { f->rotations = 1; } f->c_faces = malloc(sizeof(cairo_surface_t *)*f->rotations); if (!f->c_faces) { free(f); return 0; } for (int i = 0; i < f->rotations; ++i) { f->c_faces[i] = gdk_window_create_similar_surface(gtk_widget_get_window(window), CAIRO_CONTENT_COLOR_ALPHA, 2*radius, 2*radius); assert(f->c_faces[i]); cairo_t * ball_cr = cairo_create(f->c_faces[i]); cairo_translate(ball_cr, radius, radius); cairo_arc(ball_cr, 0.0, 0.0, radius, 0, 2 * M_PI); cairo_clip(ball_cr); if (face) { int face_x_offset = cairo_image_surface_get_width (face) / 2; int face_y_offset = cairo_image_surface_get_height (face) / 2; cairo_rotate(ball_cr, i*2*M_PI/f->rotations); cairo_scale (ball_cr, 1.0 * radius / face_x_offset, 1.0 * radius / face_y_offset); cairo_set_source_surface(ball_cr, face, -face_x_offset, -face_y_offset); cairo_paint(ball_cr); } else { cairo_pattern_t *pat; pat = cairo_pattern_create_radial (-0.2*radius, -0.2*radius, 0.2*radius, -0.2*radius, -0.2*radius, 1.3*radius); double col_r = random_color_component(); double col_g = random_color_component(); double col_b = random_color_component(); cairo_pattern_add_color_stop_rgba (pat, 0, col_r, col_g, col_b, 1); cairo_pattern_add_color_stop_rgba (pat, 1, col_r/3, col_g/3, col_b/3, 1); cairo_set_source (ball_cr, pat); cairo_arc (ball_cr, 0.0, 0.0, radius, 0, 2 * M_PI); cairo_fill (ball_cr); } cairo_surface_flush(f->c_faces[i]); cairo_destroy(ball_cr); } return f; } void init_graphics() { cairo_surface_t * face_surface = 0; if (face_filename) { face_surface = cairo_image_surface_create_from_png (face_filename); if (cairo_surface_status(face_surface) != CAIRO_STATUS_SUCCESS) { cairo_surface_destroy (face_surface); face_surface = 0; fprintf(stderr, "could not create surface from PNG file %s\n", face_filename); } } if (face_surface) { faces_count = radius_max + 1 - radius_min; faces = malloc(sizeof(struct ball_face *)*faces_count); for (unsigned int i = 0; i < faces_count; ++i) faces[i] = 0; for(struct ball * b = balls; b != balls + n_balls; ++b) { unsigned int r_idx = b->radius - radius_min; if (!faces[r_idx]) faces[r_idx] = new_ball_face(b->radius, face_surface, face_rotation); b->face = faces[r_idx]; } cairo_surface_destroy (face_surface); } else { faces_count = n_balls; faces = malloc(sizeof(struct ball_face *)*faces_count); for (unsigned int i = 0; i < n_balls; ++i) balls[i].face = faces[i] = new_ball_face(balls[i].radius, 0, face_rotation); } } void destroy_graphics() { if (!faces) return; for (int i = 0; i < faces_count; ++i) { if (faces[i]) { if (faces[i]->c_faces) { for (unsigned int j = 0; j < faces[i]->rotations; ++j) cairo_surface_destroy(faces[i]->c_faces[j]); free(faces[i]->c_faces); } free(faces[i]); } } free(faces); faces = 0; faces_count = 0; } void draw_space_ship (cairo_t * cr) { static const double one_over_sqrt_2 = 0.70710678118654752440; cairo_save(cr); cairo_set_source_rgba(cr, 0.0, 0.0, 1.0, 1.0); cairo_translate(cr, spaceship.x, spaceship.y); cairo_rotate(cr, spaceship.angle); cairo_arc(cr, 0, 0, spaceship.radius, 0, 2*M_PI); cairo_stroke(cr); cairo_set_source_rgba(cr, 0.0, 1.0, 0.0, 1.0); cairo_move_to (cr, 0, 0); cairo_line_to (cr, -one_over_sqrt_2*spaceship.radius, one_over_sqrt_2*spaceship.radius); cairo_line_to (cr, spaceship.radius, 0); cairo_line_to (cr, -one_over_sqrt_2*spaceship.radius, -one_over_sqrt_2*spaceship.radius); cairo_line_to (cr, 0, 0); cairo_stroke(cr); for (unsigned int i = 0; i < spaceship_thrust; i += 5) { cairo_arc(cr, 0, 0, spaceship.radius + i, 0.7*M_PI, 1.3*M_PI); cairo_stroke(cr); } cairo_restore(cr); } void draw_balls_onto_window () { /* clear pixmap */ GdkWindow * window = gtk_widget_get_window(canvas); cairo_region_t * c_region = cairo_region_create(); GdkDrawingContext * d_context = gdk_window_begin_draw_frame (window, c_region); cairo_t * cr = gdk_drawing_context_get_cairo_context (d_context); cairo_set_source_rgba(cr, 0.0, 0.0, 0.0, clear_alpha); cairo_paint(cr); draw_gravity_vector(cr); /* draw balls */ draw_space_ship(cr); for (const struct ball * b = balls; b != balls + n_balls; ++b) { cairo_save(cr); cairo_translate(cr, b->x - b->radius, b->y - b->radius); unsigned int face_id; if (b->face->rotations == 1) face_id = 0; else { face_id = b->face->rotations*b->angle/(2*M_PI); assert(face_id < b->face->rotations); if (face_id >= b->face->rotations) face_id %= b->face->rotations; } cairo_set_source_surface(cr, b->face->c_faces[face_id], 0, 0); cairo_paint(cr); cairo_restore(cr); } gdk_window_end_draw_frame(window, d_context); cairo_region_destroy(c_region); } gint configure_event (GtkWidget *widget, GdkEventConfigure * event) { if (width == gtk_widget_get_allocated_width(widget) && height == gtk_widget_get_allocated_height(widget)) return FALSE; width = gtk_widget_get_allocated_width(widget); height = gtk_widget_get_allocated_height(widget); reposition_within_borders(); return TRUE; } gint keyboard_input (GtkWidget *widget, GdkEventKey *event) { if (event->type != GDK_KEY_PRESS) return FALSE; switch(event->keyval) { case GDK_KEY_Up: g_y -= 10; gravity_vector_countdown = gravity_vector_init; break; case GDK_KEY_Down: g_y += 10; gravity_vector_countdown = gravity_vector_init; break; case GDK_KEY_Left: g_x -= 10; gravity_vector_countdown = gravity_vector_init; break; case GDK_KEY_Right: g_x += 10; gravity_vector_countdown = gravity_vector_init; break; case GDK_KEY_G: case GDK_KEY_g: gravity_vector_countdown = gravity_vector_init; break; case GDK_KEY_Q: case GDK_KEY_q: gtk_main_quit(); break; default: return FALSE; } return TRUE; } gboolean mouse_scroll (GtkWidget *widget, GdkEvent *event, gpointer user_data) { if (event->type == GDK_SCROLL) { GdkEventScroll * e = (GdkEventScroll*) event; switch (e->direction) { case GDK_SCROLL_SMOOTH: { double dx, dy; gdk_event_get_scroll_deltas (event, &dx, &dy); spaceship.angle -= dx/4; if (spaceship.angle < 0) spaceship.angle += 2*M_PI; else if (spaceship.angle > 2*M_PI) spaceship.angle -= 2*M_PI; spaceship_thrust += dy; if (spaceship_thrust > 0) spaceship_thrust_countdown = spaceship_thrust_init; else spaceship_thrust = 0; break; } case GDK_SCROLL_LEFT: g_x -= 10; gravity_vector_countdown = gravity_vector_init; break; case GDK_SCROLL_RIGHT: g_x += 10; gravity_vector_countdown = gravity_vector_init; break; case GDK_SCROLL_UP: g_y += 10; gravity_vector_countdown = gravity_vector_init; break; case GDK_SCROLL_DOWN: g_y -= 10; gravity_vector_countdown = gravity_vector_init; break; } } return TRUE; } void destroy_window (void) { gtk_main_quit(); } void print_usage (const char * progname) { fprintf(stderr, "usage: %s [options...]\n" "options:\n" "\tx\n" "\tn=\n" "\tfx=\n" "\tfy=\n" "\tradius=-\n" "\tv=-\n" "\tdelta= (in seconds)\n" "\tface=\n" "\tclear=\n" "\tstats= :: rendering timing statitstics (0=disabled, default)\n" "\tcollisions= :: n=no collisions, s=simple, i=index\n" "\t-r :: activate face rotation\n", progname); } static unsigned int stats_sampling = 0; static guint64 stats_update_usec = 0; static unsigned int stats_update_samples = 0; static guint64 stats_draw_usec = 0; static unsigned int stats_draw_samples = 0; gboolean draw_event (GtkWidget *widget, cairo_t *cr, gpointer data) { if (stats_sampling > 0) { guint64 start = g_get_monotonic_time (); draw_balls_onto_window(); stats_draw_usec += g_get_monotonic_time () - start; ++stats_draw_samples; } else draw_balls_onto_window(); return FALSE; } gboolean timeout (gpointer user_data) { if (stats_sampling > 0) { guint64 start = g_get_monotonic_time (); update_state(); stats_update_usec += g_get_monotonic_time () - start; if (++stats_update_samples == stats_sampling) { float uavg = 1.0*stats_update_usec / stats_update_samples; float davg = 1.0*stats_draw_usec / stats_draw_samples; printf("\rupdate = %.0f us, draw = %.0f us, load = %.0f%% (%u update, %u draw) ", uavg, davg, (uavg+davg)/(10000.0*delta), stats_update_samples, stats_draw_samples); fflush(stdout); stats_update_usec = 0; stats_update_samples = 0; stats_draw_usec = 0; stats_draw_samples = 0; } } else { update_state(); } gtk_widget_queue_draw(canvas); return TRUE; } int main (int argc, const char *argv[]) { int w = DEFAULT_WIDTH; int h = DEFAULT_HEIGHT; for (int i = 1; i < argc; ++i) { if (sscanf(argv[i], "%dx%d", &w, &h) == 2) continue; if (sscanf(argv[i], "n=%u", &n_balls) == 1) continue; if (sscanf(argv[i], "fx=%lf", &g_x) == 1) continue; if (sscanf(argv[i], "fy=%lf", &g_y) == 1) continue; if (sscanf(argv[i], "radius=%u-%u", &radius_min, &radius_max) == 2) continue; if (sscanf(argv[i], "v=%u-%u", &v_min, &v_max) == 2) continue; if (sscanf(argv[i], "delta=%lf", &delta) == 1) continue; if (strncmp(argv[i], "face=", 5) == 0) { face_filename = argv[i] + 5; continue; } if (sscanf(argv[i], "clear=%lf", &clear_alpha) == 1) continue; if (sscanf(argv[i], "stats=%u", &stats_sampling) == 1) continue; char collisions; if (sscanf(argv[i], "collisions=%c", &collisions) == 1) { switch (collisions) { case 'i': case 'I': check_collisions = check_collisions_with_index; continue; case '0': case 'N': case 'n': check_collisions = 0; continue; case 's': case 'S': check_collisions = check_collisions_simple; continue; } } if (strcmp(argv[i], "-r") == 0) { face_rotation = 1; continue; } print_usage(argv[0]); return 1; } balls = malloc(sizeof(struct ball)*n_balls); assert(balls); assert(c_index_init()); balls_init_state(); spaceship_init_state(); gtk_init(0, 0); window = gtk_window_new (GTK_WINDOW_TOPLEVEL); gtk_window_set_default_size(GTK_WINDOW(window), width, height); gtk_window_set_position(GTK_WINDOW(window), GTK_WIN_POS_CENTER); gtk_window_set_title(GTK_WINDOW(window), "Game"); g_signal_connect(window, "destroy", G_CALLBACK(destroy_window), NULL); g_signal_connect (G_OBJECT (window), "delete-event", G_CALLBACK(destroy_window), NULL); g_signal_connect(G_OBJECT (window), "key-press-event", G_CALLBACK(keyboard_input), NULL); gtk_widget_set_events (window, GDK_EXPOSURE_MASK | GDK_SCROLL_MASK | GDK_SMOOTH_SCROLL_MASK | GDK_KEY_PRESS_MASK); canvas = gtk_drawing_area_new (); g_signal_connect (G_OBJECT (canvas), "configure-event", G_CALLBACK(configure_event), NULL); g_signal_connect (G_OBJECT (canvas), "draw", G_CALLBACK (draw_event), NULL); g_signal_connect (G_OBJECT (canvas), "scroll-event",G_CALLBACK(mouse_scroll), NULL); gtk_widget_set_events (canvas, GDK_SCROLL_MASK | GDK_SMOOTH_SCROLL_MASK); gtk_container_add (GTK_CONTAINER (window), canvas); g_timeout_add (delta * 1000, timeout, canvas); gtk_widget_show_all(window); init_graphics(); gtk_main(); if (stats_sampling > 0) printf("\n"); destroy_graphics(); c_index_destroy(); free(balls); return 0; }