#include #include #include #include #include #include #include #define DEFAULT_WIDTH 800 #define DEFAULT_HEIGHT 800 struct ball { double x; double y; unsigned int radius; double v_x; double v_y; unsigned int rotation_steps; double angle; double v_angle; cairo_surface_t ** faces; }; double delta = 0.01; /* seconds */ unsigned int width = DEFAULT_WIDTH; unsigned int height = DEFAULT_HEIGHT; unsigned int radius_min = 5; unsigned int radius_max = 10; unsigned int v_max = 100; unsigned int v_min = 0; unsigned int v_angle_min = 0; unsigned int v_angle_max = 100; struct ball * balls = 0; unsigned int n_balls = 50; double g_y = 20; double g_x = 0; double clear_alpha = 1.0; void random_velocity(struct ball * p) { double r2; do { p->v_x = v_min + rand() % (v_max + 1 - v_min); p->v_y = v_min + rand() % (v_max + 1 - v_min); r2 = p->v_x*p->v_x + p->v_y*p->v_y; } while (r2 > v_max*v_max || r2 < v_min*v_min); } void balls_init_state () { srand(time(NULL)); static const unsigned int border = 10; unsigned int w = width < 2*border ? 1 : width - 2*border; unsigned int h = height < 2*border ? 1 : height - 2*border; for (unsigned int i = 0; i < n_balls; ++i) { balls[i].x = border + rand() % w; balls[i].y = border + rand() % h; random_velocity(balls + i); if (rand() % 2) balls[i].v_x = -balls[i].v_x; if (rand() % 2) balls[i].v_y = -balls[i].v_y; balls[i].radius = radius_min + rand() % (radius_max + 1 - radius_min); unsigned int v_angle_360 = (v_angle_min + rand() % (v_angle_max + 1 - v_angle_min)) % 360; balls[i].v_angle = 2*M_PI*v_angle_360/360; balls[i].angle = (rand() % 360)*2*M_PI/360; } } void ball_collision (struct ball * p, struct ball * q) { double dx = q->x - p->x; double dy = q->y - p->y; double d2 = dx*dx + dy*dy; double r = p->radius + q->radius; if (d2 <= r*r) { double dv_x = q->v_x - p->v_x; double dv_y = q->v_y - p->v_y; double mp = p->radius * p->radius; double mq = q->radius * q->radius; double f = dv_x*dx + dv_y*dy; if (f < 0) { f /= d2*(mp + mq); p->v_x += 2*mq*f*dx; p->v_y += 2*mq*f*dy; q->v_x -= 2*mp*f*dx; q->v_y -= 2*mp*f*dy; } } } void ball_update_state (struct ball * p) { p->x += delta*p->v_x + delta*delta*g_x/2.0; p->v_x += delta*g_x; p->y += delta*p->v_y + delta*delta*g_y/2.0; p->v_y += delta*g_y; if (p->x + p->radius > width) { if (p->v_x > 0) { p->x -= p->x + p->radius - width; p->v_x = -p->v_x; } } else if (p->x < p->radius) { if (p->v_x < 0) { p->x += p->radius - p->x; p->v_x = -p->v_x; } } if (p->y + p->radius > height) { if (p->v_y > 0) { p->y -= p->y + p->radius - height; p->v_y = -p->v_y; } } else if (p->y < p->radius) { if (p->v_y < 0) { p->y += p->radius - p->y; p->v_y = -p->v_y; } } p->angle += delta*p->v_angle; if (p->angle >= 2*M_PI) p->angle -= 2*M_PI; } void movement_and_borders () { for(int i = 0; i < n_balls; ++i) ball_update_state(balls + i); } /* Collision check with index */ struct rectangle { double min_x; /* left */ double min_y; /* bottom */ double max_x; /* right */ double max_y; /* top */ }; struct bt_node { struct ball * ball; struct rectangle r; struct bt_node * left; struct bt_node * right; }; struct bt_node * c_index = 0; static struct bt_node * c_index_init_node(struct bt_node * n, struct ball * b) { n->ball = b; n->r.min_x = b->x - b->radius; n->r.min_y = b->y - b->radius; n->r.max_x = b->x + b->radius; n->r.max_y = b->y + b->radius; n->left = 0; n->right = 0; return n; } static void c_index_add_ball(struct bt_node * n, const struct ball * b) { if (n->r.min_x > b->x - b->radius) n->r.min_x = b->x - b->radius; if (n->r.min_y > b->y - b->radius) n->r.min_y = b->y - b->radius; if (n->r.max_x < b->x + b->radius) n->r.max_x = b->x + b->radius; if (n->r.max_y < b->y + b->radius) n->r.max_y = b->y + b->radius; } static void c_index_insert(struct bt_node * t, struct bt_node * n, struct ball * b) { double w = width; double h = height; double ref_x = 0.0; double ref_y = 0.0; c_index_init_node(n, b); for (;;) { c_index_add_ball(t, b); if (w > h) { /* horizontal split */ if (b->x <= t->ball->x) { if (t->left) { w = t->ball->x - ref_x; t = t->left; } else { t->left = n; return; } } else { if (t->right) { w -= t->ball->x - ref_x; ref_x = t->ball->x; t = t->right; } else { t->right = n; return; } } } else { /* vertical split */ if (b->y <= t->ball->y) { if (t->left) { h = t->ball->y - ref_y; t = t->left; } else { t->left = n; return; } } else { if (t->right) { h -= t->ball->y - ref_y; ref_y = t->ball->y; t = t->right; } else { t->right = n; return; } } } } } void c_index_build() { c_index_init_node(c_index, balls); for(int i = 1; i < n_balls; ++i) c_index_insert(c_index, c_index + i, balls + i); } struct bt_node ** c_index_stack = 0; unsigned int c_index_stack_top = 0; static void c_index_stack_clear() { c_index_stack_top = 0; } static void c_index_stack_push(struct bt_node * n) { c_index_stack[c_index_stack_top++] = n; } static struct bt_node * c_index_stack_pop() { if (c_index_stack_top > 0) return c_index_stack[--c_index_stack_top]; else return 0; } static int c_index_ball_in_rectangle(const struct bt_node * n, const struct ball * b) { return n->r.min_x <= b->x + b->radius && n->r.max_x >= b->x - b->radius && n->r.min_y <= b->y + b->radius && n->r.max_y >= b->y - b->radius; } static int c_index_must_check(const struct bt_node * n, const struct ball * b) { return n != 0 && n->ball < b && c_index_ball_in_rectangle(n, b); } void c_index_check_collisions() { for(struct ball * b = balls + 1; b < balls + n_balls; ++b) { c_index_stack_clear(); struct bt_node * n = c_index; do { ball_collision(n->ball, b); if (c_index_must_check(n->left, b)) { if (c_index_must_check(n->right, b)) c_index_stack_push(n->right); n = n->left; } else if (c_index_must_check(n->right, b)) { n = n->right; } else { n = c_index_stack_pop(); } } while (n); } } int c_index_init() { if (!c_index) c_index = malloc(sizeof(struct bt_node) * n_balls); if (!c_index) return 0; if (!c_index_stack) c_index_stack = malloc(sizeof(struct bt_node *) * n_balls); if (!c_index_stack) return 0; return 1; } void c_index_destroy() { if (c_index) free(c_index); if (c_index_stack) free(c_index_stack); c_index = 0; c_index_stack = 0; } /* Trivial collision check */ void check_collisions_simple () { for(int i = 0; i < n_balls; ++i) for(int j = i + 1; j < n_balls; ++j) ball_collision(balls + i, balls + j); } void check_collisions_with_index () { c_index_build(); c_index_check_collisions(); } void (*check_collisions)() = 0; void update_state () { if (check_collisions) check_collisions(); movement_and_borders(); } /* Graphics System */ GtkWidget * window; GtkWidget * canvas; int gravity_vector_countdown = 0; int gravity_vector_init = 300; void draw_gravity_vector(cairo_t * cr) { if (gravity_vector_countdown != 0) { cairo_new_path(cr); cairo_move_to(cr, width/2, height/2); cairo_line_to(cr, width/2 + g_x, height/2 + g_y); cairo_set_source_rgb(cr, 1.0, 1.0, 1.0); cairo_set_line_width(cr, 1.0); cairo_stroke(cr); cairo_arc(cr, width/2 + g_x, height/2 + g_y, 3, 0, 2*M_PI); cairo_fill(cr); if (gravity_vector_countdown > 0) --gravity_vector_countdown; } } const char * face_filename = 0; static const double linear_rotation_unit = 2.0; void init_ball_face(struct ball * b, cairo_surface_t * face) { if (face) { b->rotation_steps = 2*M_PI * b->radius / linear_rotation_unit; } else { b->rotation_steps = 1; } b->faces = malloc(sizeof(cairo_surface_t *)*b->rotation_steps); assert(b->faces); for (int i = 0; i < b->rotation_steps; ++i) { b->faces[i] = gdk_window_create_similar_surface(window->window, CAIRO_CONTENT_COLOR_ALPHA, 2*b->radius, 2*b->radius); assert(b->faces[i]); cairo_t * ball_cr = cairo_create(b->faces[i]); cairo_translate(ball_cr, b->radius, b->radius); cairo_arc(ball_cr, 0.0, 0.0, b->radius, 0, 2 * M_PI); cairo_clip(ball_cr); cairo_set_source_rgb(ball_cr, 1.0*(rand() % 256)/255, 1.0*(rand() % 256)/255, 1.0*(rand() % 256)/255); cairo_paint(ball_cr); if (face) { int face_x_offset = cairo_image_surface_get_width (face) / 2; int face_y_offset = cairo_image_surface_get_height (face) / 2; cairo_rotate(ball_cr, i*2*M_PI/b->rotation_steps); cairo_scale (ball_cr, 1.0 * b->radius / face_x_offset, 1.0 * b->radius / face_y_offset); cairo_set_source_surface(ball_cr, face, -face_x_offset, -face_y_offset); cairo_paint(ball_cr); } cairo_surface_flush(b->faces[i]); cairo_destroy(ball_cr); } } void init_graphics() { cairo_surface_t * face_surface = 0; if (face_filename) { face_surface = cairo_image_surface_create_from_png (face_filename); if (cairo_surface_status(face_surface) != CAIRO_STATUS_SUCCESS) { cairo_surface_destroy (face_surface); face_surface = 0; fprintf(stderr, "could not create surface from PNG file %s\n", face_filename); } } for(int i = 0; i < n_balls; ++i) init_ball_face(&(balls[i]), face_surface); if (face_surface) cairo_surface_destroy (face_surface); } void destroy_graphics() { for(int i = 0; i < n_balls; ++i) { for (int j = 0; j < balls[i].rotation_steps; ++i) cairo_surface_destroy(balls[i].faces[j]); free(balls[i].faces); } } void draw_balls_onto_window () { /* clear pixmap */ cairo_t * cr = gdk_cairo_create (canvas->window); cairo_set_source_rgba(cr, 0.0, 0.0, 0.0, clear_alpha); cairo_paint(cr); draw_gravity_vector(cr); /* draw balls */ for(int i = 0; i < n_balls; ++i) { cairo_save(cr); cairo_translate(cr, balls[i].x - balls[i].radius, balls[i].y - balls[i].radius); unsigned int face_id; if (balls[i].rotation_steps == 1) face_id = 0; else { face_id = balls[i].rotation_steps*balls[i].angle/M_PI; if (face_id >= balls[i].rotation_steps) face_id %= balls[i].rotation_steps; } cairo_set_source_surface(cr, balls[i].faces[face_id], 0, 0); cairo_paint(cr); cairo_restore(cr); } cairo_destroy(cr); } gint configure_event (GtkWidget *widget, GdkEventConfigure * event) { if (width == widget->allocation.width && height == widget->allocation.height) return FALSE; width = widget->allocation.width; height = widget->allocation.height; return TRUE; } gint keyboard_input (GtkWidget *widget, GdkEventKey *event) { if (event->type != GDK_KEY_PRESS) return FALSE; switch(event->keyval) { case GDK_KEY_Up: g_y -= 10; gravity_vector_countdown = gravity_vector_init; break; case GDK_KEY_Down: g_y += 10; gravity_vector_countdown = gravity_vector_init; break; case GDK_KEY_Left: g_x -= 10; gravity_vector_countdown = gravity_vector_init; break; case GDK_KEY_Right: g_x += 10; gravity_vector_countdown = gravity_vector_init; break; case GDK_KEY_G: case GDK_KEY_g: gravity_vector_countdown = gravity_vector_init; break; case GDK_KEY_Q: case GDK_KEY_q: gtk_main_quit(); break; default: return FALSE; } return TRUE; } gboolean expose_event (GtkWidget *widget, GdkEventExpose *event, gpointer data) { draw_balls_onto_window(); return TRUE; } void destroy_window (void) { gtk_main_quit(); } void print_usage (const char * progname) { fprintf(stderr, "usage: %s [options...]\n" "options:\n" "\tx\n" "\tn=\n" "\tfx=\n" "\tfy=\n" "\tradius=-\n" "\tv=-\n" "\tdelta=\n" "\tface=\n" "\tclear=\n" "\tstats= :: rendering timing statitstics (0=disabled, default)\n" "\tcollisions= :: n=no collisions, s=simple, i=index\n", progname); } unsigned int stats_sampling = 0; gboolean timeout (gpointer user_data) { guint64 start = 0, elapsed_usec; if (stats_sampling > 0) start = g_get_monotonic_time (); update_state(); draw_balls_onto_window(); if (stats_sampling > 0) { elapsed_usec = g_get_monotonic_time () - start; static guint64 elapsed_usec_total = 0; static unsigned int samples = 0; if (samples == stats_sampling) { printf("\rframe rendering: time = %lu usec, max freq = %.2f (avg over %u samples) ", elapsed_usec_total / samples, (1000000.0 * samples) / elapsed_usec_total, samples); fflush(stdout); samples = 0; elapsed_usec_total = 0; } ++samples; elapsed_usec_total += elapsed_usec; } return TRUE; } int main (int argc, const char *argv[]) { int w = DEFAULT_WIDTH; int h = DEFAULT_HEIGHT; for (int i = 1; i < argc; ++i) { if (sscanf(argv[i], "%dx%d", &w, &h) == 2) continue; if (sscanf(argv[i], "n=%u", &n_balls) == 1) continue; if (sscanf(argv[i], "fx=%lf", &g_x) == 1) continue; if (sscanf(argv[i], "fy=%lf", &g_y) == 1) continue; if (sscanf(argv[i], "radius=%u-%u", &radius_min, &radius_max) == 2) continue; if (sscanf(argv[i], "v=%u-%u", &v_min, &v_max) == 2) continue; if (sscanf(argv[i], "delta=%lf", &delta) == 1) continue; if (strncmp(argv[i], "face=", 5) == 0) { face_filename = argv[i] + 5; continue; } if (sscanf(argv[i], "clear=%lf", &clear_alpha) == 1) continue; if (sscanf(argv[i], "stats=%u", &stats_sampling) == 1) continue; char collisions; if (sscanf(argv[i], "collisions=%c", &collisions) == 1) { switch (collisions) { case 'i': case 'I': check_collisions = check_collisions_with_index; continue; case '0': case 'N': case 'n': check_collisions = 0; continue; case 's': case 'S': check_collisions = check_collisions_simple; continue; } } print_usage(argv[0]); return 1; } balls = malloc(sizeof(struct ball)*n_balls); assert(balls); assert(c_index_init()); balls_init_state(); gtk_init(0, 0); window = gtk_window_new (GTK_WINDOW_TOPLEVEL); gtk_window_set_default_size(GTK_WINDOW(window), width, height); gtk_window_set_position(GTK_WINDOW(window), GTK_WIN_POS_CENTER); gtk_window_set_title(GTK_WINDOW(window), "Game"); g_signal_connect(window, "destroy", G_CALLBACK(destroy_window), NULL); g_signal_connect (G_OBJECT (window), "delete-event", G_CALLBACK(destroy_window), NULL); g_signal_connect(window, "key-press-event", G_CALLBACK(keyboard_input), NULL); gtk_widget_set_events (window, GDK_EXPOSURE_MASK | GDK_BUTTON_PRESS_MASK | GDK_KEY_PRESS_MASK); canvas = gtk_drawing_area_new (); g_signal_connect (G_OBJECT (canvas), "expose-event", G_CALLBACK (expose_event), NULL); g_signal_connect (G_OBJECT (canvas), "configure-event", G_CALLBACK(configure_event), NULL); gtk_container_add (GTK_CONTAINER (window), canvas); g_timeout_add (delta * 1000, timeout, canvas); gtk_widget_show_all(window); init_graphics(); gtk_main(); if (stats_sampling > 0) printf("\n"); destroy_graphics(); c_index_destroy(); free(balls); return 0; }