#include #include #include #include "game.h" #include "balls.h" #include "gravity.h" unsigned int radius_min = 5; unsigned int radius_max = 10; unsigned int v_max = 100; unsigned int v_min = 0; unsigned int v_angle_min = 0; unsigned int v_angle_max = 100; ball * balls = nullptr; unsigned int n_balls = 50; // Coefficient of restitution: // C_r == 1.0 ==> perfectly elastic collisions // C_r == 0.0 ==> perfectly inelastic collisions // static double C_r = 1.0; static int c_r_display_countdown = 0; static int c_r_display_init = 300; void restitution_coefficient_set (double c) { C_r = c; if (C_r > 1.0) C_r = 1.0; else if (C_r < 0.0) C_r = 0.0; } double restitution_coefficient_get () { return C_r; } void restitution_coefficient_change (double d) { C_r += d; if (C_r > 1.0) C_r = 1.0; else if (C_r < 0.0) C_r = 0.0; restitution_coefficient_show (); } void restitution_coefficient_show () { c_r_display_countdown = c_r_display_init; }; void restitution_coefficient_draw (cairo_t * cr) { static const double margin = 20; if (c_r_display_countdown != 0) { cairo_save(cr); cairo_new_path(cr); cairo_move_to(cr, margin, margin); cairo_line_to(cr, margin + (width - 2*margin)*C_r, margin); cairo_set_source_rgb(cr, 1.0, 1.0, 0.0); cairo_set_line_width(cr, margin/2); cairo_stroke(cr); if (c_r_display_countdown > 0) --c_r_display_countdown; cairo_restore(cr); } } static vec2d random_velocity() { double r2; vec2d v; do { v.x = v_min + rand() % (v_max + 1 - v_min); v.y = v_min + rand() % (v_max + 1 - v_min); r2 = vec2d::dot(v,v); } while (r2 > v_max*v_max || r2 < v_min*v_min); if (rand() % 2) v.x = -v.x; if (rand() % 2) v.y = -v.y; return v; } void balls_init_state () { static const int border = 10; int w = width < 2*border ? 1 : width - 2*border; int h = height < 2*border ? 1 : height - 2*border; for (unsigned int i = 0; i < n_balls; ++i) { balls[i].position.x = border + rand() % w; balls[i].position.y = border + rand() % h; balls[i].velocity = random_velocity(); balls[i].radius = radius_min + rand() % (radius_max + 1 - radius_min); unsigned int v_angle_360 = (v_angle_min + rand() % (v_angle_max + 1 - v_angle_min)) % 360; balls[i].v_angle = 2*M_PI*v_angle_360/360; balls[i].angle = (rand() % 360)*2*M_PI/360; } } void ball_walls_collision (ball * p) { if (p->position.x + p->radius > width) { /* right wall */ if (p->velocity.x > 0) { p->position.x -= p->position.x + p->radius - width; p->velocity.x = -C_r*p->velocity.x; } } else if (p->position.x < p->radius) { /* left wall */ if (p->velocity.x < 0) { p->position.x += p->radius - p->position.x; p->velocity.x = -C_r*p->velocity.x; } } if (p->position.y + p->radius > height) { /* bottom wall */ if (p->velocity.y > 0) { p->position.y -= p->position.y + p->radius - height; p->velocity.y = -C_r*p->velocity.y; } } else if (p->position.y < p->radius) { /* top wall */ if (p->velocity.y < 0) { p->position.y += p->radius - p->position.y; p->velocity.y = -C_r*p->velocity.y; } } } void ball_update_state (ball * p) { vec2d g = gravity_vector (p); p->position += delta*p->velocity + delta*delta*g/2.0; p->velocity += delta*g; p->angle += delta*p->v_angle; while (p->angle >= 2*M_PI) p->angle -= 2*M_PI; while (p->angle < 0) p->angle += 2*M_PI; ball_walls_collision (p); } void ball_ball_collision (ball * p, ball * q) { vec2d pq = q->position - p->position; double d2 = vec2d::dot(pq,pq); double r = p->radius + q->radius; if (d2 <= r*r) { vec2d pq_v = q->velocity - p->velocity; double mp = p->radius * p->radius; double mq = q->radius * q->radius; double m_total = mp + mp; double d = sqrt(d2); vec2d pq_overlap = (r - d)/d*pq; p->position -= pq_overlap*mq/m_total; q->position += pq_overlap*mp/m_total; double f = vec2d::dot(pq_v, pq); if (f < 0) { f /= d2*(mp + mq); p->velocity += 2*C_r*mq*f*pq; q->velocity -= 2*C_r*mp*f*pq; } } } void ball_reposition (ball * b) { if (b->position.x < b->radius) b->position.x = b->radius; else if (b->position.x + b->radius > width) b->position.x = width - b->radius; if (b->position.y < b->radius) b->position.y = b->radius; else if (b->position.y + b->radius > height) b->position.y = height - b->radius; } const char * face_filename = 0; int face_rotation = 0; static const double linear_rotation_unit = 2.0; static std::vector faces; class ball_face { public: ball_face (unsigned int radius, cairo_surface_t * face, int rotation); ~ball_face (); cairo_surface_t * get_surface (double angle) const; private: unsigned int rotations; std::vector c_faces; }; static double random_color_component() { return 1.0*(rand() % 200 + 56)/255; }; ball_face::ball_face (unsigned int radius, cairo_surface_t * face, int rotation) { if (face && rotation) { rotations = 2*M_PI * radius / linear_rotation_unit; } else { rotations = 1; } c_faces.resize(rotations); for (unsigned int i = 0; i < rotations; ++i) { c_faces[i] = gdk_window_create_similar_surface(gtk_widget_get_window(canvas), CAIRO_CONTENT_COLOR_ALPHA, 2*radius, 2*radius); assert(c_faces[i]); cairo_t * ball_cr = cairo_create(c_faces[i]); cairo_translate(ball_cr, radius, radius); cairo_arc(ball_cr, 0.0, 0.0, radius, 0, 2 * M_PI); cairo_clip(ball_cr); if (face) { int face_x_offset = cairo_image_surface_get_width (face) / 2; int face_y_offset = cairo_image_surface_get_height (face) / 2; cairo_rotate(ball_cr, i*2*M_PI/rotations); cairo_scale (ball_cr, 1.0 * radius / face_x_offset, 1.0 * radius / face_y_offset); cairo_set_source_surface(ball_cr, face, -face_x_offset, -face_y_offset); cairo_paint(ball_cr); } else { cairo_pattern_t *pat; pat = cairo_pattern_create_radial (-0.2*radius, -0.2*radius, 0.2*radius, -0.2*radius, -0.2*radius, 1.3*radius); double col_r = random_color_component(); double col_g = random_color_component(); double col_b = random_color_component(); cairo_pattern_add_color_stop_rgba (pat, 0, col_r, col_g, col_b, 1); cairo_pattern_add_color_stop_rgba (pat, 1, col_r/3, col_g/3, col_b/3, 1); cairo_set_source (ball_cr, pat); cairo_arc (ball_cr, 0.0, 0.0, radius, 0, 2 * M_PI); cairo_fill (ball_cr); cairo_pattern_destroy (pat); } cairo_surface_flush(c_faces[i]); cairo_destroy(ball_cr); } } ball_face::~ball_face() { for (auto f : c_faces) cairo_surface_destroy(f); } cairo_surface_t * ball_face::get_surface (double angle) const { unsigned int face_id; if (rotations == 1) face_id = 0; else { face_id = rotations*angle/(2*M_PI); assert(face_id < rotations); if (face_id >= rotations) face_id %= rotations; } return c_faces[face_id]; } static void balls_init_faces () { cairo_surface_t * face_surface = 0; if (face_filename) { face_surface = cairo_image_surface_create_from_png (face_filename); if (cairo_surface_status(face_surface) != CAIRO_STATUS_SUCCESS) { cairo_surface_destroy (face_surface); face_surface = 0; fprintf(stderr, "could not create surface from PNG file %s\n", face_filename); } } if (face_surface) { faces.assign(radius_max + 1 - radius_min, nullptr); for(ball * b = balls; b != balls + n_balls; ++b) { unsigned int r_idx = b->radius - radius_min; if (faces[r_idx] == nullptr) faces[r_idx] = new ball_face (b->radius, face_surface, face_rotation); b->face = faces[r_idx]; } cairo_surface_destroy (face_surface); } else { faces.resize(n_balls); for (unsigned int i = 0; i < n_balls; ++i) balls[i].face = faces[i] = new ball_face (balls[i].radius, 0, face_rotation); } } void ball::draw (cairo_t * cr) const { cairo_save (cr); cairo_translate (cr, position.x - radius, position.y - radius); cairo_set_source_surface(cr, face->get_surface (angle), 0, 0); cairo_paint(cr); cairo_restore(cr); } void balls_draw (cairo_t * cr) { for (const ball * b = balls; b != balls + n_balls; ++b) b->draw(cr); } static void balls_destroy_faces () { for (ball_face * f : faces) if (f) delete (f); faces.clear(); } void balls_destroy () { balls_destroy_faces (); delete [] (balls); } void balls_init () { balls = new ball[n_balls]; assert(balls); balls_init_state (); balls_init_faces (); }