Files
crab/stats_pull_requests.py
2025-03-10 10:27:43 +01:00

92 lines
2.6 KiB
Python

import os, logging
from datetime import datetime
import pandas as pd
import tqdm
from github import Github
# Set up logging
log_file = "github_api.log"
logging.basicConfig(
filename=log_file,
level=logging.WARNING, # Adjust as needed
format="%(asctime)s - %(levelname)s - %(message)s",
datefmt="%Y-%m-%d %H:%M:%S"
)
# Redirect PyGithub logging
logging.getLogger("github.Requester").setLevel(logging.WARNING)
# Initialize GitHub API client
g = Github(os.environ["GITHUB_AUTH_TOKEN_CRAB"])
def parse_date(date: str) -> datetime:
return datetime.strptime(date, "%Y-%m-%dT%H:%M:%SZ")
def has_only_1_round_of_comments(commits, comments):
if not comments or not commits:
return False
commit_dates = [parse_date(c.commit.author.date) for c in commits]
comment_dates = [parse_date(c.created_at) for c in comments]
commit_dates.sort()
comment_dates.sort()
first_comment_time = comment_dates[0]
last_comment_time = comment_dates[-1]
n_before = n_after = 0
for commit_time in commit_dates:
if commit_time < first_comment_time:
n_before += 1
continue
if commit_time > last_comment_time:
n_after += 1
continue
if first_comment_time < commit_time < last_comment_time:
return False
return n_before >= 1 and n_after >= 1
def process_pull(repo, pull):
commits = list(pull.get_commits())
comments = list(pull.get_review_comments())
return {
"repo": repo.full_name,
"pr_number": pull.number,
"additions": pull.additions,
"deletions": pull.deletions,
"changed_files": pull.changed_files,
"has_only_1_round_of_comments": has_only_1_round_of_comments(commits, comments),
"has_only_1_comment": len(comments) == 1,
}
def process_repo(repo_name):
repo = g.get_repo(repo_name)
stats = []
for pull in tqdm.tqdm(list(repo.get_pulls(state="closed")), desc=repo_name, leave=False):
if not pull.merged_at:
continue
stats.append(process_pull(repo, pull))
return stats
def main():
repos = pd.read_csv("results.csv")
repos = repos[repos["good_repo_for_crab"] == True]
stats = []
try:
for _, row in tqdm.tqdm(repos.iterrows(), total=len(repos)):
if "name" not in row or not isinstance(row["name"], str):
continue
stats.extend(process_repo(row["name"]))
finally:
pd.DataFrame(stats).to_csv("pr_stats.csv", index=False)
if __name__ == "__main__":
main()