Files
crab/dataset.py
2025-05-07 10:32:02 +02:00

211 lines
6.7 KiB
Python

from dataclasses import dataclass, field
from enum import Enum
from typing import Any, Dict, List, Optional
import json, argparse, os, uuid
from utils import prompt_yes_no
# fmt: off
@dataclass
class FileData:
is_code_related: bool
coverage: Dict[str, float] # jacoco-report -> coverage
content_before_pr: str = ""
content_after_pr: str = ""
@dataclass
class Comment:
body: str
file: str
from_: int
to: int
@dataclass
class Selection:
comment_suggests_change: bool
diff_after_address_change: Optional[bool]
good: Optional[bool]
@dataclass
class Metadata:
id: str
repo: str # the name of the repo, with style XXX/YYY
pr_number: int
pr_title: str
pr_body: str
merge_commit_sha: str # to checkout for the tests
successful: bool = True
build_system: str = ""
reason_for_failure: str = ""
last_cmd_error_msg: str = ""
selection: Optional[Selection] = None
@dataclass
class DatasetEntry:
metadata: Metadata
files: Dict[str, FileData] # filename -> file data, files before the PR (before the first PR commits)
diffs_before: Dict[str, str] # filename -> diff, diffs between the opening of the PR and the comment
comments: List[Comment]
diffs_after: Dict[str, str] # filename -> diff, changes after the comment
@dataclass
class CommentGenEntry:
id: str
files: Dict[str, str] # filename -> file content
diffs: Dict[str, str] # filename -> diff, diffs between the opening of the PR and the comment
@staticmethod
def from_entry(entry: DatasetEntry) -> "CommentGenEntry":
return CommentGenEntry(
id=entry.metadata.id,
files={fname: fdata.content_before_pr for fname, fdata in entry.files.items()},
diffs=entry.diffs_before,
)
@dataclass
class CodeRefinementEntry:
id: str
files: Dict[str, str] # filename -> file content
diffs: Dict[str, str] # filename -> diff, diffs between the opening of the PR and the comment
comments: List[Comment]
@staticmethod
def from_entry(entry: DatasetEntry) -> "CodeRefinementEntry":
return CodeRefinementEntry(
id=entry.metadata.id,
files={fname: fdata.content_before_pr for fname, fdata in entry.files.items()},
diffs=entry.diffs_before,
comments=entry.comments,
)
class OutputType(Enum):
FULL = "full"
CODE_REFINEMENT = "code_refinement"
COMMENT_GEN = "comment_gen"
# fmt: on
@dataclass
class Dataset:
entries: List[DatasetEntry] = field(default_factory=list)
def __len__(self) -> int:
return sum(1 for entry in self.entries if entry.metadata.successful)
def to_json(self, filename: str, type_: OutputType = OutputType.FULL) -> None:
"""Serialize the dataset to a JSON file"""
entries_to_dump = self.entries
if type_ == OutputType.COMMENT_GEN:
entries_to_dump = [
entry
for entry in self.entries
if entry.metadata.selection and entry.metadata.selection.comment_suggests_change
]
elif type_ == OutputType.CODE_REFINEMENT:
entries_to_dump = [
entry
for entry in self.entries
if entry.metadata.selection and entry.metadata.selection.diff_after_address_change
]
to_dump = Dataset(entries=entries_to_dump)
print(f"{len(entries_to_dump)} entries...", end=" ", flush=True)
def transform_entry(entry: DatasetEntry | Dataset | Any) -> dict | list:
if not isinstance(entry, (DatasetEntry, Dataset)):
return entry.__dict__
if type_ == OutputType.FULL:
return entry.__dict__
if isinstance(entry, Dataset):
return entry.entries
if type_ == OutputType.COMMENT_GEN:
return CommentGenEntry.from_entry(entry).__dict__
if type_ == OutputType.CODE_REFINEMENT:
return CodeRefinementEntry.from_entry(entry).__dict__
with open(filename, "w", encoding="utf-8") as f:
json.dump(to_dump, f, default=transform_entry, indent=4)
@staticmethod
def from_json(filename: str, keep_still_in_progress: bool = False) -> "Dataset":
with open(filename, "r", encoding="utf-8") as f:
print(f"Loading dataset from {filename}...", end=" ", flush=True)
data = json.load(f)
print("Done")
entries = []
for entry_data in data["entries"]:
metadata_data = entry_data["metadata"]
selection_data = metadata_data["selection"] if "selection" in metadata_data else None
selection = Selection(**selection_data) if selection_data else None
metadata_data["selection"] = selection
if "id" not in metadata_data:
metadata_data["id"] = uuid.uuid4().hex
metadata = Metadata(**metadata_data)
if (
not keep_still_in_progress
and metadata.reason_for_failure == "Was still being processed"
):
continue
files = {fname: FileData(**fdata) for fname, fdata in entry_data["files"].items()}
comments = [Comment(**comment) for comment in entry_data["comments"]]
entry = DatasetEntry(
metadata=metadata,
files=files,
diffs_before=entry_data["diffs_before"],
comments=comments,
diffs_after=entry_data["diffs_after"],
)
entries.append(entry)
return Dataset(entries=entries)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Dataset class")
parser.add_argument(
"-f",
"--filename",
type=str,
required=True,
help="Path to the JSON file to load",
)
parser.add_argument(
"-o",
"--output",
type=str,
default="output.json",
help="Path to the output JSON file",
)
parser.add_argument(
"-t",
"--output_type",
choices=[mode.value for mode in OutputType],
default=OutputType.FULL.value,
help="Type of output to generate",
)
args = parser.parse_args()
dataset = Dataset.from_json(args.filename)
print(f"Loaded {len(dataset.entries)} entries from {args.filename}")
if os.path.exists(args.output):
overwrite = prompt_yes_no(
f"Output file {args.output} already exists. Do you want to overwrite it?"
)
if not overwrite:
print("Exiting without saving.")
exit(0)
print(f"Saving dataset to {args.output},", end=" ", flush=True)
dataset.to_json(args.output, OutputType(args.output_type))
print("Done")