mirror of
https://github.com/karma-riuk/crab.git
synced 2025-07-05 05:28:13 +02:00
369 lines
13 KiB
Python
369 lines
13 KiB
Python
from collections import defaultdict
|
|
import argparse, os, subprocess, docker
|
|
from typing import Any, Callable
|
|
from github.PullRequest import PullRequest
|
|
from github.Repository import Repository
|
|
import pandas as pd
|
|
from github import Github, GithubException
|
|
from tqdm import tqdm
|
|
from datetime import datetime
|
|
|
|
from dataset import Dataset, DatasetEntry, FileData, Metadata
|
|
from handlers import HandlerException, get_build_handler
|
|
from utils import has_only_1_comment, move_github_logging_to_file, clone
|
|
|
|
|
|
def get_good_projects(csv_file: str) -> pd.DataFrame:
|
|
"""
|
|
Extracts the good (the ones that compile and test successfully, and that
|
|
have at least one test) from the given file.
|
|
|
|
Parameters:
|
|
csv_file (str): The csv file containing the projects.
|
|
|
|
Returns:
|
|
pd.DataFrame: The good projects.
|
|
"""
|
|
df = pd.read_csv(csv_file)
|
|
return df.loc[(df['good_repo_for_crab'] == True) & (df['n_tests'] > 0)]
|
|
|
|
|
|
def is_pull_good(pull: PullRequest, verbose: bool = False) -> bool:
|
|
comments = pull.get_review_comments()
|
|
if pull.user.type != "Bot" or comments.totalCount > 2:
|
|
return False
|
|
|
|
if comments.totalCount == 2:
|
|
comment_list = list(comments)
|
|
second_comment = comment_list[1]
|
|
if second_comment.user.login != pull.user.login:
|
|
return False
|
|
|
|
return has_only_1_comment(pull.get_commits(), pull.get_review_comments(), verbose=verbose)
|
|
|
|
|
|
def run_git_cmd(cmd: list[str], repo_path: str) -> subprocess.CompletedProcess:
|
|
return subprocess.run(
|
|
["git", "-C", repo_path] + cmd,
|
|
check=True,
|
|
capture_output=True,
|
|
text=True,
|
|
)
|
|
|
|
|
|
def ensure_full_history(repo_path: str) -> None:
|
|
result = run_git_cmd(["rev-parse", "--is-shallow-repository"], repo_path)
|
|
|
|
if result.stdout.strip() == "true":
|
|
run_git_cmd(["fetch", "--unshallow"], repo_path)
|
|
|
|
|
|
def reset_repo_to_latest_commit(repo_path: str) -> None:
|
|
current_branch = run_git_cmd(["rev-parse", "--abbrev-ref", "HEAD"], repo_path).stdout.strip()
|
|
run_git_cmd(["reset", "--hard", current_branch], repo_path)
|
|
|
|
|
|
def process_pull(
|
|
repo: Repository,
|
|
pr: PullRequest,
|
|
dataset: Dataset,
|
|
repos_dir: str,
|
|
cache: dict[str, dict[int, DatasetEntry]] = {},
|
|
):
|
|
if pr.number in cache.get(repo.full_name, set()):
|
|
dataset.entries.append(cache[repo.full_name][pr.number])
|
|
return
|
|
|
|
commits = list(pr.get_commits())
|
|
if not commits:
|
|
return # No commits, skip processing
|
|
|
|
first_commit = commits[0]
|
|
last_commit = commits[-1]
|
|
|
|
try:
|
|
diffs_before = {
|
|
file.filename: file.patch for file in repo.compare(pr.base.sha, first_commit.sha).files
|
|
}
|
|
except GithubException as e:
|
|
return
|
|
|
|
comments = list(pr.get_review_comments())
|
|
assert len(comments) == 1
|
|
comment = comments[0]
|
|
comment_text = comment.body
|
|
commented_file_path = comment.path
|
|
|
|
try:
|
|
diffs_after = {
|
|
file.filename: file.patch for file in repo.compare(first_commit.sha, last_commit.sha).files
|
|
}
|
|
except GithubException as e:
|
|
return
|
|
|
|
entry = DatasetEntry(
|
|
metadata=Metadata(
|
|
repo.full_name,
|
|
pr.number,
|
|
pr.merge_commit_sha,
|
|
{comment_text: commented_file_path},
|
|
reason_for_failure="Was still being processed",
|
|
),
|
|
files={file.filename: FileData(file.filename) for file in pr.get_files()},
|
|
diffs_before=diffs_before,
|
|
comments=[comment_text],
|
|
diffs_after=diffs_after,
|
|
)
|
|
dataset.entries.append(entry)
|
|
|
|
repo_path = os.path.join(repos_dir, repo.full_name)
|
|
|
|
updates = {}
|
|
if not clone(repo.full_name, repos_dir, updates):
|
|
entry.metadata.last_cmd_error_msg = updates["error_msg"]
|
|
entry.metadata.reason_for_failure = "Couldn't clone the repo successfully"
|
|
entry.metadata.successful = False
|
|
|
|
def _try_cmd(action: Callable[[], Any], reason_for_failure: str) -> bool:
|
|
"""
|
|
Tries a command, and if it fails, it sets the metadata of the entry.
|
|
"""
|
|
try:
|
|
# return action()
|
|
action()
|
|
except subprocess.CalledProcessError as e:
|
|
entry.metadata.last_cmd_error_msg = f"{e.stderr}"
|
|
entry.metadata.reason_for_failure = reason_for_failure
|
|
entry.metadata.successful = False
|
|
# raise e
|
|
return entry.metadata.successful
|
|
|
|
if not _try_cmd(
|
|
lambda: ensure_full_history(repo_path),
|
|
"Couldn't ensure the full history of the repo (fetch --unshallow)",
|
|
):
|
|
return
|
|
|
|
try:
|
|
run_git_cmd(["checkout", pr.merge_commit_sha], repo_path)
|
|
except subprocess.CalledProcessError:
|
|
if not _try_cmd(
|
|
lambda: run_git_cmd(["fetch", "origin", f"pull/{pr.number}/merge"], repo_path),
|
|
"Couldn't fetch the PR's merge commit",
|
|
):
|
|
return
|
|
|
|
if not _try_cmd(
|
|
lambda: run_git_cmd(["checkout", pr.merge_commit_sha], repo_path),
|
|
"Coudln't checkout the PR's merge commit (even after fetching the pull/<pr_number>/merge)",
|
|
):
|
|
return
|
|
|
|
build_handler = get_build_handler(repos_dir, repo.full_name, updates)
|
|
if build_handler is None:
|
|
entry.metadata.last_cmd_error_msg = updates["error_msg"]
|
|
entry.metadata.reason_for_failure = "Couldn't get the build handler"
|
|
entry.metadata.successful = False
|
|
return
|
|
entry.metadata.build_system = build_handler.get_type()
|
|
build_handler.set_client(docker_client)
|
|
|
|
def _check_coverages():
|
|
for coverage_file, coverage in build_handler.check_coverage(commented_file_path):
|
|
entry.metadata.commented_files_coverages[commented_file_path][coverage_file] = coverage
|
|
|
|
steps = [
|
|
("Checking for tests...", build_handler.check_for_tests),
|
|
("Compiling...", build_handler.compile_repo),
|
|
("Running tests...", build_handler.test_repo),
|
|
("Generating coverage...", build_handler.generate_coverage_report),
|
|
("Checking coverage...", _check_coverages),
|
|
]
|
|
|
|
with build_handler, tqdm(total=len(steps), desc="Processing PR", leave=False) as pbar:
|
|
try:
|
|
for message, action in steps:
|
|
pbar.set_postfix(
|
|
{
|
|
"doing": message,
|
|
"started at": datetime.now().strftime("%d/%m, %H:%M:%S"),
|
|
}
|
|
)
|
|
action()
|
|
pbar.update(1)
|
|
except HandlerException as e:
|
|
entry.metadata.last_cmd_error_msg = str(e)
|
|
entry.metadata.reason_for_failure = e.reason_for_failure
|
|
entry.metadata.successful = False
|
|
finally:
|
|
build_handler.clean_repo()
|
|
reset_repo_to_latest_commit(repo_path)
|
|
|
|
if entry.metadata.successful:
|
|
entry.metadata.reason_for_failure = "" # was set to 'still processing', since it's done being processed and was successful, there are no reasons for failure
|
|
|
|
|
|
def process_repo(
|
|
repo_name: str,
|
|
dataset: Dataset,
|
|
repos_dir: str,
|
|
cache: dict[str, dict[int, DatasetEntry]] = {},
|
|
):
|
|
repo = g.get_repo(repo_name)
|
|
if repo.full_name in cache:
|
|
dataset.entries.extend(cache[repo.full_name].values())
|
|
dataset.to_json(args.output)
|
|
|
|
prs = repo.get_pulls(state="closed")
|
|
|
|
n_good_prs = 0
|
|
with tqdm(total=prs.totalCount, desc="Processing prs", leave=False) as pbar:
|
|
for pr in prs:
|
|
pbar.set_postfix({"pr": pr.number, "# new good found": n_good_prs})
|
|
if pr.merged_at is None or not is_pull_good(pr):
|
|
pbar.update(1)
|
|
continue
|
|
|
|
n_good_prs += 1
|
|
process_pull(repo, pr, dataset, repos_dir, cache)
|
|
dataset.to_json(args.output)
|
|
pbar.update(1)
|
|
|
|
|
|
def process_repos(
|
|
df: pd.DataFrame,
|
|
dataset: Dataset,
|
|
repos_dir: str,
|
|
cache: dict[str, dict[int, DatasetEntry]] = {},
|
|
):
|
|
"""
|
|
Processes the repos in the given csv file, extracting the good ones and
|
|
creating the "triplets" for the dataset.
|
|
|
|
Parameters:
|
|
csv_file (str): The csv file containing the projects.
|
|
dataset (Dataset): The dataset in which the triplets will be stored.
|
|
Passing it by reference in order have the latest information, in case of an error
|
|
verbose (bool): Whether to be verbose or not
|
|
"""
|
|
with tqdm(total=len(df), desc="Processing repos") as pbar:
|
|
for _, row in df.iterrows():
|
|
repo_name = row["name"]
|
|
assert isinstance(repo_name, str)
|
|
pbar.set_postfix(
|
|
{
|
|
"repo": repo_name,
|
|
"started at": datetime.now().strftime("%d/%m, %H:%M:%S"),
|
|
"# triplets": f"{len(dataset)}/{len(dataset.entries)} ({len(dataset)/len(dataset.entries) if len(dataset.entries) > 0 else 0:.2%})",
|
|
}
|
|
)
|
|
process_repo(repo_name, dataset, repos_dir, cache)
|
|
pbar.update(1)
|
|
|
|
|
|
def only_inject_jacoco(
|
|
dataset: Dataset,
|
|
repos_dir: str,
|
|
cache: dict[str, dict[int, DatasetEntry]] = {},
|
|
):
|
|
n_successfull_injections = 0
|
|
n_tried_injections = 0
|
|
with tqdm(cache, desc="Processing repos (only for injection") as top_bar:
|
|
for repo_name in top_bar:
|
|
top_bar.set_postfix(
|
|
{
|
|
"# successfull injections": f"{n_successfull_injections}/{n_tried_injections} ({n_successfull_injections/n_tried_injections if n_tried_injections > 0 else 0:.2%})"
|
|
}
|
|
)
|
|
with tqdm(total=len(cache[repo_name]), desc=f"Processing prs", leave=False) as pbar:
|
|
# extracting keys so that it doesn't get messy as I pop elements from the dict
|
|
pr_numbers = list(cache[repo_name].keys())
|
|
for pr_number in pr_numbers:
|
|
pbar.set_postfix({"repo": repo_name, "pr": pr_number})
|
|
|
|
entry = cache[repo_name].pop(pr_number)
|
|
if entry.metadata.reason_for_failure != "Couldn't execute jacoco":
|
|
dataset.entries.append(entry)
|
|
dataset.to_json(args.output)
|
|
pbar.update(1)
|
|
continue
|
|
|
|
n_tried_injections += 1
|
|
repo = g.get_repo(repo_name)
|
|
pull = repo.get_pull(pr_number)
|
|
process_pull(repo, pull, dataset, repos_dir, cache)
|
|
pbar.update(1)
|
|
last_addition = dataset.entries[-1]
|
|
last_metadata = last_addition.metadata
|
|
if (
|
|
last_metadata.repo == repo_name
|
|
and last_metadata.pr_number == pr_number
|
|
and last_metadata.successful
|
|
):
|
|
n_successfull_injections += 1
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser(description='Creates the triplets for the CRAB dataset.')
|
|
parser.add_argument(
|
|
'csv_file',
|
|
type=str,
|
|
help='The csv file containing the projects (the results from clone_repos.py).',
|
|
)
|
|
parser.add_argument(
|
|
'-o',
|
|
'--output',
|
|
type=str,
|
|
default="./dataset.json",
|
|
help='The file in which the dataset will be contained. Default is "./dataset.json"',
|
|
)
|
|
parser.add_argument(
|
|
'-r',
|
|
'--repos',
|
|
type=str,
|
|
default="./results/",
|
|
help='The directory in which the repos were cloned (will be cloned if they aren\'t there already). Default: "./results/"',
|
|
)
|
|
parser.add_argument(
|
|
'-c',
|
|
'--cache',
|
|
type=str,
|
|
help="The name of the output file from another run of this script. This is for when the script unexpectedly got interrupted and you want to resume from where you left off.",
|
|
)
|
|
# parser.add_argument('-v', '--verbose', action='store_true', help='Prints the number of good projects.')
|
|
parser.add_argument(
|
|
"--only-repo",
|
|
type=str,
|
|
help="If this argument is not provided, all the repos in the '--repos' csv will be processed. If instead you want to run the script on a single repo (for testing purposes mainly) provide a string of form 'XXX/YYY' to this argument, where XXX is the owner of the repo and YYY is the name of the repo",
|
|
)
|
|
parser.add_argument(
|
|
"--only-inject-jacoco",
|
|
action="store_true",
|
|
help="You must provide a cache with --cache. It will take that cache and go through all the entries that failed because they couldn't execute jacoco and process them again, trying to inject jacoco manually",
|
|
)
|
|
|
|
args = parser.parse_args()
|
|
g = Github(os.environ["GITHUB_AUTH_TOKEN_CRAB"])
|
|
docker_client = docker.from_env()
|
|
move_github_logging_to_file()
|
|
|
|
df = get_good_projects(args.csv_file)
|
|
|
|
if args.only_repo is not None:
|
|
df = df.loc[df["name"] == args.only_repo]
|
|
|
|
cache: dict[str, dict[int, DatasetEntry]] = defaultdict(dict)
|
|
if args.cache is not None:
|
|
cache_dataset = Dataset.from_json(args.cache)
|
|
for cache_entry in cache_dataset.entries:
|
|
cache[cache_entry.metadata.repo][cache_entry.metadata.pr_number] = cache_entry
|
|
|
|
dataset = Dataset()
|
|
try:
|
|
if args.only_inject_jacoco:
|
|
only_inject_jacoco(dataset, args.repos, cache)
|
|
else:
|
|
process_repos(df, dataset, args.repos, cache)
|
|
finally:
|
|
dataset.to_json(args.output)
|