from dataclasses import dataclass, field from typing import Dict, List import json from collections import defaultdict # fmt: off @dataclass class FileData: path: str content: str = "" # Not sure about this, maybe we should just keep the path and extract the contents dynamically (boh) @dataclass class Metadata: repo: str # the name of the repo, with style XXX/YYY pr_number: int merge_commit_sha: str # to checkout for the tests commented_files: Dict[str, str] # comment -> filename commented_files_coverages: Dict[str, Dict[str, float]] = field(default_factory=lambda: defaultdict(dict)) # filename -> jacoco-report -> coverage successful: bool = True build_system: str = "" reason_for_failure: str = "" last_cmd_error_msg: str = "" @dataclass class DatasetEntry: metadata: Metadata files: Dict[str, FileData] # filename -> file data, files before the PR (before the first PR commits) diffs_before: Dict[str, str] # filename -> diff, diffs between the opening of the PR and the comment comments: List[str] diffs_after: Dict[str, str] # filename -> diff, changes after the comment # fmt: on @dataclass class Dataset: entries: List[DatasetEntry] = field(default_factory=list) def __len__(self) -> int: return sum(1 for entry in self.entries if entry.metadata.successful) def to_json(self, filename: str): """Serialize the dataset to a JSON file""" with open(filename, "w", encoding="utf-8") as f: json.dump(self, f, default=lambda o: o.__dict__, indent=4) @staticmethod def from_json(filename: str, keep_still_in_progress: bool = False) -> "Dataset": with open(filename) as f: data = json.load(f) entries = [] for entry_data in data["entries"]: metadata_data = entry_data["metadata"] metadata = Metadata(**metadata_data) if ( not keep_still_in_progress and metadata.reason_for_failure == "Was still being processed" ): continue files = {fname: FileData(**fdata) for fname, fdata in entry_data["files"].items()} entry = DatasetEntry( metadata=metadata, files=files, diffs_before=entry_data["diffs_before"], comments=entry_data["comments"], diffs_after=entry_data["diffs_after"], ) entries.append(entry) return Dataset(entries=entries)