import os from datetime import datetime import pandas as pd from tqdm import tqdm from github import Github from utils import has_only_1_round_of_comments, has_only_1_comment, move_logger_to_file tqdm.pandas() # Initialize GitHub API client g = Github(os.environ["GITHUB_AUTH_TOKEN_CRAB"]) def process_pull(repo, pull): commits = pull.get_commits() comments = pull.get_review_comments() return { "repo": repo.full_name, "pr_number": pull.number, "additions": pull.additions, "deletions": pull.deletions, "changed_files": pull.changed_files, "has_only_1_round_of_comments": has_only_1_round_of_comments(commits, comments), "has_only_1_comment": has_only_1_comment(commits, comments), } def process_repo(repo_name): repo = g.get_repo(repo_name) stats = [] with tqdm(list(repo.get_pulls(state="closed")), desc=repo_name, leave=False) as pbar: for pull in pbar: pbar.set_postfix({"started at": datetime.now().strftime("%d/%m, %H:%M:%S")}) if not pull.merged_at: continue stats.append(process_pull(repo, pull)) return stats def main(): repos = pd.read_csv("results.csv") repos = repos[(repos["good_repo_for_crab"] == True) & (repos["n_tests"] > 0)] stats = [] try: for _, row in tqdm(repos.iterrows(), total=len(repos)): if "name" not in row or not isinstance(row["name"], str): continue stats.extend(process_repo(row["name"])) pd.DataFrame(stats).to_csv("pr_stats.csv", index=False) finally: pd.DataFrame(stats).to_csv("pr_stats.csv", index=False) if __name__ == "__main__": move_logger_to_file("github", "github_api.log") main()