57 lines
2.8 KiB
TeX
57 lines
2.8 KiB
TeX
\appendix
|
|
|
|
\section{Calculations}
|
|
\label{appendix:calculations}
|
|
|
|
\paragraph{Moment of inertia of rectangle}
|
|
\begin{equation}
|
|
\label{eq:rect_moment_long}
|
|
\begin{split}
|
|
I_{\text{rect}} & =
|
|
\rho \int_{-\frac{h}{2}}^{\frac{h}{2}} \int_{-\frac{w}{2}}^{\frac{w}{2}} x^2 + y^2 \diff x \diff y \\
|
|
& = 4 \rho \int_{0}^{\frac{h}{2}} \int_{0}^{\frac{w}{2}} x^2 + y^2 \diff x \diff y \\
|
|
& = 4 \rho \int_{0}^{\frac{h}{2}} \Biggl[\frac{1}{3} x^3 + x y^2 \Biggr]_{0}^{\frac{w}{2}} dy \\
|
|
& = 4 \rho \int_{0}^{\frac{h}{2}} \frac{1}{3} \frac{w^3}{8} + \frac{w}{2} y^2 dy \\
|
|
& = 2 \rho \int_{0}^{\frac{h}{2}} \frac{w^3}{12} + w y^2 dy \\
|
|
& = 2 \rho \Biggl[ \frac{w^3}{12} y + \frac{w}{3} y^3 \Biggr]_{0}^{\frac{h}{2}} \\
|
|
& = 2 \rho \frac{w}{3} \Biggl[ \frac{w^2}{4}y + y^3 \Biggr]_{0}^{\frac{h}{2}} \\
|
|
& = 2 \rho \frac{w}{3} \left( \frac{w^2}{4}\frac{h}{2} + \frac{h^3}{8} \right) \\
|
|
& = \rho \frac{w}{3} \left( \frac{w^2}{4}h + \frac{h^3}{4} \right) \\
|
|
& = \frac{\rho wh}{12} \left( w^2 + h^3 \right) \\
|
|
\end{split}
|
|
\end{equation}
|
|
|
|
\newpage
|
|
\paragraph{Moment of inertia of sub-triangle of regular polygon}
|
|
Before starting the calculations, it is to be noted that according to Figure
|
|
\ref{fig:subtriangle}, we have that
|
|
$$ \tan\left(\frac{\theta}{2}\right) = \frac{\frac{l}{2}}{h} = \frac{l}{2h} $$
|
|
it will be useful to simplify the result of the integral.
|
|
|
|
\begin{equation}
|
|
\label{eq:subtriangle_moment_long}
|
|
\begin{split}
|
|
I_{T} &= \rho \int_0^h\int_{-\frac{lx}{2h}}^{\frac{lx}{2h}}x^2 + y^2 \diff y\diff x\\
|
|
&= 2\rho \int_0^h\int_0^{\frac{lx}{2h}} x^2 + y^2 \diff y\diff x\\
|
|
&= 2\rho \int_0^h \Biggl[x^2y + \frac{1}{3} y^3\Biggr]_0^{\frac{lx}{2h}} \diff x\\
|
|
&= 2\rho \int_0^h x^2 \frac{lx}{2h} + \frac{1}{3} \frac{l^3x^3}{8h^3} \diff x\\
|
|
&= 2\rho \left(\frac{l}{2h} + \frac{l^3}{24h^3}\right) \int_0^h x^3 \diff x\\
|
|
&= 2\rho \left(\frac{l}{2h} + \frac{l^3}{24h^3}\right) \Biggl[ \frac{1}{4} x^4\Biggr]_0^h \\
|
|
&= \frac{h^4\rho}{2} \left(\frac{l}{2h} + \frac{l^3}{24h^3}\right) \\
|
|
&= \frac{\rho lh^3}{4} \left(1 + \frac{l^2}{12h^2}\right) \\
|
|
&= \frac{m_T h^2}{2} \left(1 + \frac{l^2}{12h^2}\right) \\
|
|
&= \frac{m_T}{2} \frac{l^2}{4 \tan^2\left(\frac{\theta}{2}\right)}\left(1 + \frac{4 \tan^2\left(\frac{\theta}{2}\right)}{12}\right) \\
|
|
&= \frac{m_Tl^2}{24} \left(1 + 3\cot^2\left(\frac{\theta}{2}\right)\right)
|
|
\end{split}
|
|
\end{equation}
|
|
|
|
\newpage
|
|
\paragraph{Moment of inertia of sub-triangle of arbitrary polygon}
|
|
\begin{equation}
|
|
\label{eq:subtriangle_arbitrary_moment_long}
|
|
\begin{split}
|
|
I_{T_i} = \rho \int_0^1 \int_0^1 \vec r^2 hb \alpha \diff \alpha \diff \beta\\
|
|
&=
|
|
\end{split}
|
|
\end{equation}
|