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Abstract

Physics engines are a fun and interesting way to learn about a lot of different subjects. First the theoretical concepts,
such as the equations that dictate the motion of the objects, together with their components, need to be thoroughly
understood. Then there is the necessity of finding a way to represent all of those concepts in a given programming
language and to make them as efficient as possible so that the simulation runs fluidly. The task to be completed here
was to extend an already existing physics engine that only made circles bounce off each other. The extension was
focused on having the ability to generate some arbitrary polygons and make them bounce off each other in a phys-
ically accurate way. The main issues that rose up during the development of the extension: determining the inertia
of a arbitrary polygon, which is important for realistic impacts; having an accurate collision detection system, which
allows the engine to know when to make two polygons bounce off each other. Once those aspects were worked on
and polished, the rest of the implementation went smoothly.
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1 Introduction

1.1 Goal of the project

The goal of the project was to extend an existing physics engine called "flying-balls"1 by Prof. Antonio Carzaniga.
This physics engine simulated the interactions between circles in a two-dimensional space. These circles appear in
the window with a random position, together with a random initial velocity vector. The simulation would then just
calculate the position of each circle in the following frame and draw it in its new state. If two circles were to collide
with each other, the engine would detect it and make those circles bounce off each other. The resulting position and
speed would be decided by the physics equations that govern the motion of such objects.

The extension this project was asked to bring is the possibility to have more complex shapes interact with each
other, such as polygons. The polygons would have to be arbitrary and bounce off other polygons present in the scene.

1.2 State of the art

There are a lot of 2D physiques engines across the internet. The purpose of this project was not to bring something
new to the already existing landscape, but rather learn how to complete every step of the process (polygons gen-
eration, collision detection, kinematics resolution) from scratch, simply having a pre-existing way to represent the
shapes on the screen.

1The state of the project before the extension can be found at https://github.com/carzaniga/flying-balls/tree/c++-port
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2 Technical Background

The technical background is all the research related to the programming part of this bachelor project. The program-
ming language used in this project is a mixture of C and C++, for this part, the course of Systems Programming
taught by Prof. Carzaniga during the third semester. Then came the study of the starting point of the project, which
was divided in the logic itself and the framework used to display the state of the simulation on the screen.

2.1 Original project

Before starting to write any code, it was necessary to study carefully the original project. The starting point chosen
for this specific project was the last commit on the c++-port branch. The reason for this choice is that the project
originally started fully in C (which is still the case for the main branch) and C++ offers more functionalities that help
for a smoother development process.

The life-cycle of the simulation was the typical three-step process:

1. State initiation: the state of the application is set with certain starting conditions;

2. State update: the state, at each frame, gets applied a set of rules that govern the behaviour of the application;

3. Termination: when the user stops the application, it actuates a number of cleaning up operations.

Just like any C/C++ project, the modules were split into different files, and those modules where themselves
split into header files and implementation files. The header files expose the public interface which other modules
can call to execute a determine function, whereas the implementation files, as the name suggests, offer the concrete
implementation of the aforementioned functions. The implementation files can use some static2 functions that it can
use as auxiliary or utility functions. The header files usually expose the fields and methods of the class (or struct)
the module is using, if any, together with one function for each of three steps of the life-cycle mentioned above.

2.2 Cairo

Cairo is a 2D graphics library with support for multiple output devices. Cairo is designed to produce consistent
output on all output media while taking advantage of display hardware acceleration when available. The cairo API
provides operations similar to the drawing operators of PostScript and PDF. Operations in cairo including stroking
and filling cubic Bézier splines, transforming and compositing translucent images, and antialiased text rendering.
All drawing operations can be transformed by any affine transformation (scale, rotation, shear, etc.). Reading the
documentation3, and more specifically the practical tutorial4 was useful to understand how the library works.

The Cairo drawing model relies on a three-layer model, any drawing process takes place in three steps:

1. first a mask is created, which includes one or more
vector primitives or forms, i.e., circles, squares, True-
Type fonts, Bézier curves, etc;

2. then source must be defined, which may be a color,
a color gradient, a bitmap or some vector graphics,
and from the painted parts of this source a die cut is
made with the help of the above defined mask;

3. finally the result is transferred to the destination or
surface, which is provided by the back-end for the
output.

Figure 2.1. Cairo’s drawing model5

2static in the sense of C, i.e. visible only to the file it is declared in
3https://www.cairographics.org/documentation/
4https://www.cairographics.org/tutorial/
5Image taken from Wikipedia
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3 Theoretical Background

The theoretical background is everything related to the physics part of the project. It covers the calculating the inertia
of different types of polygons; different algorithms to detect whether there is a collision between two polygons; the
resolution of the collision, i.e. finding the final velocity vectors and angular speed of those polygons.

3.1 Moment of inertia

The inertia of an object refers to the tendency of an object to resist a change of its state of motion or rest, it describes
how the object behaves when forces are applied to it. An object with a lot of inertia requires more force to change
its motion, either to make it move if it’s at rest or to stop it if it’s already moving. On the other hand, an object with
less inertia is easier to set in motion or bring to a halt.

The moment of inertia is similar but is used in a slightly different context, it specifically refers to the rotational in-
ertia of an object. It measures an object’s resistance to changes in its rotational motion and how its mass is distributed
with respect to is axis of rotation.

In the case of this project the axis of rotation is the one along the z-axis (perpendicular to the plane of the
simulation) and placed at the barycenter of the polygon.

The general formula for the moment of inertia is

IQ =

∫
r⃗2ρ(r⃗)dA (3.1)

where ρ is the density of object Q in the point r⃗ across the small pieces of area A of the object.
In our case, since we are implementing a 2D engine we can use the R2 coordinate systems, thus the formula

becomes

IQ =

∫∫
ρ(x , y)r⃗2 dx dy

and since the requirements express that the mass of the polygons is spread uniformly across its surface, the formula
finally becomes

IQ = ρ

∫∫
x2 + y2 dx dy (3.2)

The bounds of the integral depend on the shape of the polygon. In the following sections, we will describe how
to compute those bounds, then we will show a different technique to compute the moment of inertia of arbitrary
polygons.

3.1.1 Rectangle

The moment of inertia of a rectangle of width w and height h with respect to the axis of rotation that passes through
its barycenter can be visualized in the Figure 3.1.
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(b) 3d view of rectangle with axis of rotation

Figure 3.1. Representation of rectangle with respect to axis of rotation z
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As figure Figure 3.1a implies, the bounds of equation 3.2 are trivial to derive:

Irect = ρ

∫ h
2

− h
2

∫ w
2

− w
2

x2 + y2 dx dy =
ρwh
12

�
w2 + h2

�
(3.3)

and since ρwh is the density of the rectangle multiplied by its area, we can replace this term by its mass m, thus

Irect =
1

12
m
�
w2 + h2

�
(3.4)

All the steps to compute equation 3.3 can be found in equation A.1 in Appendix A.

3.1.2 Regular Polygons

A regular polygon is a shape that has sides of equal length and angles between those sides of equal measure. A
polygon of n sides can be subdivided in n congruent (and isosceles since they are all the radius of the circumscribing
circle) triangles that all meet in the polygon’s barycenter, as demonstrated in Figure 3.2b with a pentagon.

(a) Regular polygon of 5 sides with its barycenter (b) Pentagon divided in 5 congruent triangles

Figure 3.2. Subdivision of regular polygons into congruent triangles

If we define one of the sub-triangle of the regular polygon as T , then we can find the moment of inertia IT when
it is rotating about the barycenter. To find the bounds of the integral in equation 3.2, we can take the triangle T and
place it along the x-axis so that it is symmetric likes shown in figure. Assuming the side length of the polygon is l,
the height of the triangle T is h and the angle of the triangle on the barycenter of the polygon to be θ , then

h

l
2

− l
2

x

y

θ
2

Figure 3.3. Sub-triangle T of regular polygon

we can see the bounds for the integral

IT = ρ

∫ h

0

∫ l x
2h

− l x
2h

x2 + y2 dy dx =
mT l2

24

�
1+ 3 cot2

�
θ

2

��
(3.5)

All the steps to compute equation 3.5 can be found in equation A.2 in Appendix A.
Now that we have the moment of inertia of the sub-triangle, we can make the link to the overall polygon. Since

θ =
2π
n
=⇒ θ

2
=
π

n
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and the moment of inertia are additive (as long they are as they are about the same axis) we can get the moment of
inertia with

Iregular = nIT

and since the mass of the regular polygon m is the sum of the masses of the sub-triangle

m= nmT

we have that

Iregular =
ml2

24

�
1+ 3cot2

�π
n

��
(3.6)

3.1.3 Arbitrary Polygons

For arbitrary polygons, we are taking a slightly different approach. Using the Cartesian coordinate system to solve
the equation 3.2 revealed to be more cumbersome than useful. But similarly to regular polygons (c.f. Section 3.1.2),
we can use the additive property of the moment inertia to divide our arbitrary polygon into sub-triangles. As opposed
to regular polygons, these triangles won’t be congruent, so we can’t just get the moment of inertia of one of them
and multiply it by the number of sides, but we need to calculate them individually. So given a polygon of n sides, we
can construct n sub-triangles Ti , for i = 1, . . . , n. So the moment of inertia I of the polygon will be

I =
∑

i

ITi
(3.7)

(a) An arbitrary 6-sided polygon

T1

T2

T3

T4

T5

T6

C

(b) Arbitrary polygon divided into 6 sub-triangles

To calculate the moment of inertia ITi
, instead of using the classical x- and y-axis as we did before, we decided

to use the edges of the triangle as axis and therefore express what we need to integrate in function of those as can
be seen in Figure 3.5.
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Figure 3.5. Sub-triangle of arbitrary polygon

In Figure 3.5, C represent the barycenter of the polygon (as is shown in Figure 3.4b). The axis we are going to

integrate on are
−→
CA and

−→
AB. We can now define

−−→
C P1 = α

−→
CA,

−−→
C P2 = α

−→
CB, ∀α ∈ [0, 1] (3.8)

and −−→
P1Q = β

−−→
P1P2, ∀β ∈ [0, 1]

From 3.8, it quickly follows that −−→
P1P2 = α

−→
AB

therefore −−→
P1Q = βα

−→
AB (3.9)

Finally, if we put together equations 3.8 and 3.9, we have that

r⃗ =
−−→
C P1 +

−−→
P1Q = α

−→
CA+ βα

−→
AB (3.10)

Now we got the first part equation 3.1. To find the dA, we just need to get the area of the square that contains
Q in Figure 3.5. Since ∥−→AB∥ represents the base of the triangle Ti , we can define

b = ∥−→AB∥
we consequently have that

dA= bαdβh dα (3.11)

where h= ∥−→CH∥ is the height of triangle. We can now assemble 3.10 and 3.11

ITi
= ρ

∫ 1

0

∫ 1

0

r⃗2hbαdαdβ =
ρhb

4

�
1
3
−→
AB2 +

−→
AB · −→CA+

−→
CA2

�
(3.12)

Since ρhb
2 is the mass of the triangle we can write the result as

ITi
=

mTi

2

�
1
3
−→
AB2 +

−→
AB · −→CA+

−→
CA2

�
(3.13)

All the steps to compute equation 3.12 can be found in equation A.3 in Appendix A.
Now that we have the moment of inertia of the sub-triangle, we can make the link to the overall polygon.

Iarbitrary =
∑

i

ITi
=

n∑
i=1

mTi

2

�
1
3
−−−→
Pi Pi+1

2 +
−→
C Pi · −−−→Pi Pi+1 +

−→
C Pi

2
�

(3.14)

where, Pn+1 = P1 in the case of i = n.
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3.2 Collision detection

Collision detection, as the name suggests, are the algorithms used to detect whether two polygons are colliding.
The result of this procedure must be an impact point and a normal vector, that will then be used for the collision
resolution 3.3.

3.2.1 Separating Axis Theorem

This algorithm was the first one studied for this project and was inspired by the works of David Eberly [1]. The
separating axis theorem (SAT) states that if you can draw a line between two convex objects, they do not overlap.
We will call this line a separating line. More technically, two convex shapes do not overlap if there exists an axis onto
which the two objects’ projections do not overlap. We’ll call this axis a separating axis. This concept can be visualized
in Figure 3.6.

A

B

C

Figure 3.6. SAT: Separating axis (A) vs non-separating axis (B), with separating line (C)

As we can see in Figure 3.6, the axis B show that the projections of the both polygons overlap, but we were able
to find an axis A where this is not the case. As soon as we find an axis for which the projections do not overlap, it
means that the polygons are not colliding. For 2D objects, we only need to consider the axes that are orthogonal to
each edge. In Figure 3.6, only two of those axes are shown for better readability, but they would be 7, one for each
edge.

To move (or push) one polygon away from the other, we also need to find a vector that, when added to the
polygons position, will make the shapes not overlap. We want the minimum displacement possible, We’ll call this
vector the minimum push vector (MPV). For 2-dimensional polygons, this vector will lie in some of the orthogonal
axes.
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v⃗i

o⃗i

ei

Figure 3.7. SAT: Minimum push vector v⃗i on axis defined by o⃗i , orthogonal to edge ei

The candidate MPVs v⃗i are the vectors that define the axis o⃗i (orthogonal to edge ei), with ∥o⃗i∥ = 1, multiplied
by the minimum overlap between the two polygons, as shown in 3.7. The final MPV is simply the v⃗i with the smallest
norm.

Pitfalls of SAT The issue with the SAT algorithm is that although it is good to find whether two polygons are colliding
and the MPV, it isn’t trivial to gather the point of impact, i.e. the vertex that is penetrating the other polygon. It is
doable, but during the implementation, it came with some caveats that introduced some bugs, so we decided to
switch strategy and go with an algorithm of our own. Moreover, SAT only supports convex polygons, which limits
the original objective of the project, which was to have any arbitrary polygon.

3.2.2 Vertex collisions

The solution that was adopted for the project, after trying SAT, was a more intuitive one, developed by Prof. Carzaniga.
The idea is simple: check if a vertex of a polygon is colliding with an edge of another polygon.

Vi

e j

Vi−1

Vi+1

A

B

Figure 3.8. Vertex-edge collision between polygons A and B

If we have a polygon defined as a set of points P ⊂ R2, we define a vertex as a pair of segments
�
Vi−1Vi , Vi+1Vi

�
.

To check if vertex Vi of polygon A is inside polygon B, we just check if the both segments Vi−1Vi and Vi+1Vi intersect
edge e j . If such is the case, we know that Vi is inside, and we can use it as impact point. We can now take the vector
perpendicular to the edge e j and normalize it, which is the normal we need for the collision resolution.
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Edge cases With this approach (and many other collision detection algorithms), it is easy to see that the case
described in the Figure 3.8 is only a general one. It will ultimately happen most often, but there are especially two
edge cases that are note-worthy and occurred during the simulation a greater number of times than expected.

Parallel collision Parallel collision occur when two edge collide with each other, an example can be seen in Figure
3.9. This collision does not get detected by the vertex-edge detection method because the edge of A parallel to the
edge of B do not collide, since they are parallel.

Vi

Vi−1

Vi+1

e j

A

B

Figure 3.9. Parallel edges collision between polygons A and B

To determine if polygon A is having a parallel collision with polygon B we check if only the segment Vi−1Vi

intersects with edge e j and if the segment Vi+1Vi is parallel to edge e j .

To find the impact point, we first need to find the minimum overlap between the parallel edges. We can calculate
it by projecting the points that make the parallel edges of A and B on the axis generated by the edge of A (c.f. Figure
3.10).Finally, the impact point, is the midpoint of the said overlap.

A

B
p

(a) Edge fully contained by other edge

A

B

p

(b) Edge partly contained by other edge

Figure 3.10. Parallel collision, finding the impact point

The normal vector is given in the same way as the vertex-edge collision, i.e. taking the perpendicular vector to e j

and normalizing it.

Vertex on vertex collision These collision happen when, at the moment of the frame, two polygons are "inside
each other", i.e. they both have have a vertex present inside the area of the other polygon, as shown in Figure 3.11.
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A

B

Figure 3.11. Vertex on vertex collision between polygons A and B

Two problems arise when trying to deal with this edge case:

1. determining which of the two vertices we chose as the impact point;

2. determining what normal vector.

For point 1, it actually doesn’t really matter. What is represented in Figures 3.8-3.11 are an over exaggeration
of what happens in the engine. Since the time delta between two frames is so small, the collisions look more like
what is in Figure 3.12c, where the concerned vertices are located practically in the same spot, and the difference is
negligible. So for convenience with the general vertex-edge case, we will take the vertex of A being inside B as the
impact point.

For point 2, that’s where the real problem of the edge case occur. We are unable to determine what vectors is
supposed to be the normal vector. One might say "just take the vector that goes from the vertex of A (that is inside B)
to the one of B (that is inside A)", but it doesn’t work out in general. It works (kind of) when we have non-rotating
objects going straight at each other, but as soon as you have rotational motion, this reasoning collapses. The solution
that was decided (together with advisor Prof. Carzaniga) was to treat the collision as a vertex-edge collision, and
choosing whatever the first edge of B comes up first in the calculations as the edge to find the normal. The results
look realistic enough to be accepted.

A

B

(a) Realistic vertex-edge collision

A

B

(b) Realistic edge-edge collision

A
B

(c) Realistic vertex-vertex collision

Figure 3.12. Realistic collisions

3.3 Collision resolution

The collision resolution is the last step in the processing of the collision. Algorithmically, it is much less heavy than
collision detection, since, once the simulation has two colliding polygons, a point of impact and a normal vector, it’s
just a case of applying the rigid body physics formulas to the polygons that are colliding. This part has been helped
a lot by the works of Erik Neumann [2] and Chris Hecker [3].
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n⃗
P

A

B

r⃗ap

r⃗bp

Figure 3.13. Collision resolution between polygons A and B

Variable definition Before getting into any maths, let’s define some variables that we are going to use

• ma, mb = mass of the bodies A and B

• r⃗ap = distance vector from center of mass of body
A to point P

• r⃗bp = distance vector from center of mass of body
A to point P

• ωa1,ωb1 = initial angular velocity of bodies A, B

• ωa2,ωb2 = final angular velocity of bodies A, B

• v⃗a1, v⃗b1 = initial velocities of center of mass bodies
A, B

• v⃗a2, v⃗b2 = final velocities of center of mass bodies
A, B

• v⃗ap1 = initial velocity of impact point P on body A

• v⃗bp1 = initial velocity of impact point P on body B

• v⃗p1 = initial relative velocity of impact points on
body A, B

• v⃗p2 = final relative velocity of impact points on
body A, B

• n⃗= normal vector

• e = elastic coefficient (0 = inelastic, 1 = perfectly
elastic)

Some of those variables, like the ones in the left column, are already given by the simulation, some of them have
been computed thanks to the algorithms in section 3.2 (normal vector and position of point P), and some have still
to be defined mathematically, such as v⃗ap1, v⃗bp1, v⃗p1 and v⃗p2. So the velocity vectors of impact point P on both bodies,
before the collision, are

v⃗ap1 = v⃗a1 +ωa1 × r⃗ap

v⃗bp1 = v⃗b1 +ωb1 × r⃗bp
(3.15)

Similarly, the final velocities are

v⃗ap2 = v⃗a2 +ωa2 × r⃗ap

v⃗bp2 = v⃗b2 +ωb2 × r⃗bp
(3.16)

Here we are regarding the angular velocity as a 3-dimensional vector perpendicular to the plane, so that the cross
product is calculated as

ω× r⃗ =




0
0
ω


×




rx

ry

0


=



−ωry

ωrx

0




We these variables, we can finally define the relative velocities v⃗p1 and v⃗p2

v⃗p1 = v⃗ap1 − v⃗bp2

v⃗p2 = v⃗ap2 − v⃗bp2
(3.17)
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If we expand by using 3.15 and 3.16, we get

v⃗p1 = v⃗a1 +ωa1 × r⃗ap − v⃗b1 +ωb1 × r⃗bp

v⃗p2 = v⃗a2 +ωa2 × r⃗ap − v⃗b2 +ωb2 × r⃗bp
(3.18)

The relative velocity of point P along the normal vector n⃗ is

v⃗p1 · n⃗

Note that for a collision to occur this relative normal velocity must be negative (that is, the objects must be approach-
ing each other). Let e be the elasticity of the collision, having a value between 0 (inelastic) and 1 (perfectly elastic).
We now make an important assumption in the form of the following relation

v⃗p2 · n⃗= −ev⃗p1 · n⃗ (3.19)

This says that the velocity at which the objects fly apart is proportional to the velocity with which they were coming
together. The proportionality factor is the elasticity e.

Collision Impulse In simple terms, collision impulse refers to the change in momentum experienced by an object
during a collision. It is a measure of the force applied to an object over a short period of time. We imagine that
during the collision there is a very large force acting for a very brief period of time. If you integrate (sum) that force
over that brief time, you get the impulse.

In our simulation, we are assuming that no friction is happening during the collision, so that the only force we
have to consider is the one of along the normal vector n⃗. The friction would create a force perpendicular to the
normal, and it would make things a little too complicated for the scope of this project.

Since the only force we consider is the normal one, we can consider the net impulse to be jn⃗, where j is the
impulse parameter. The body A will experience the net impulse jn⃗ and body B will experience it’s negation − jn⃗ since
the force that B experience is equal an opposite to the one experienced by A. The impulse is a change in momentum.
Momentum has units of velocity times mass, so if we divide the impulse by the mass we get the change in velocity.
We can relate initial and final velocities as

v⃗a2 = v⃗a1 +
jn⃗
ma

(3.20)

v⃗b2 = v⃗b1 −
jn⃗
mb

(3.21)

For the final angular speed, it’s change from the impulse jn⃗ is given by r⃗ap × jn⃗. We can divide the result by the
moment of inertia, which was calculated in section 3.1, to get convert the change in angular momentum into change
in angular speed. Similarly as above, we can relate the initial and final angular velocity as

ωa2 =ωa1 +
r⃗ap × jn⃗

Ia
(3.22)

ωb2 =ωb1 −
r⃗bp × jn⃗

Ib
(3.23)

Solving for the impulse parameter Now we have everything we need to solve for the impulse parameter j. The
bulk of the calculations can be found in section A.4 of the appendix A. But basically we start with equation 3.19 and
we end up with

j =
−(1+ e) · v⃗ap1 · n⃗

1
ma
+ 1

mb
+ (

r⃗ap×n⃗)2
Ia

+ (
r⃗bp×n⃗)2

Ib

(3.24)
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4 Implementation

This section will dive into the actual implementing of the project, trying to describe how the theoretical concepts in
section 3.

4.1 Structure

The added code to the project can be divided into three parts

• polygon generator;

• collision detection;

• collision resolution.

Each part will be explained in the following sub-sections.

4.1.1 Polygon generator

Before talking about how we generate polygons, let’s first talk about how the polygons are defined in this project.
In the file polygons.h we define a polygon as

Listing 1. Polygon class (simplified)

1 class polygon {

2 std::vector<vec2d> points;

3

4 vec2d center;

5 double angle;

6

7 double inertia;

8 double mass;

9

10 std::vector<vec2d> global_points();

11

12 vec2d speed;

13 double angular_speed;

14 }

Polygons possesses multiple fields. Firstly we have std::vector<vec2d> points, a collection of vec2d objects,
which represent the set of ordered points that compose the polygon. Those points are expressed in local coordinates,
and the center of mass of the polygon is placed the origin.

Now that we know how the polygon is composed, we want to move it around the space it lives in, that is the
purpose of the vec2d center field. It represents where the center of mass of the polygon is located in simulation.
Since the shapes also rotate, we need to keep track of the rotation of the polygon, hence the use of double angle.
All of these fields are used when computing the result of the method std::vector<vec2d> global_points().

Finally, we have double inertia and double masswhich, as their name suggest, store the value for the polygon’s
inertia and mass, that are used to calculate the polygons final speed and angular speed, who are represented by
vec2d speed and double angular_speed.

Polygon generator Now that we know how polygons are represented in our simulation, we can generate them. In
polygon_generator.h (and its implementation file polygon_generator.cc), there are some functions for that. In
Listing 2 we can see the signature of the functions that generate

• a rectangle of a certain width and height;

• a square of a certain side length;

• a triangle given two side lengths and an angle between them;

• a regular polygon;

• an arbitrary polygon.
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Listing 2. Polygon Generator header file

1 namespace poly_generate {

2 polygon rectangle(double width, double height);

3

4 inline polygon square(double width) {

5 assert(width > 0);

6 return rectangle(width, width, label);

7 };

8

9 polygon triangle(double side1, double side2, double angle);

10

11 polygon regular(double radius, uint n_sides);

12

13 polygon general(std::vector<vec2d> points);

14 };

The implementation of those functions are fairly straight forward, they generate the appropriate number of points
in the correct place. After what they calculate the mass and subsequent inertia of the polygon as shown in section
3.1.

4.1.2 Collision

The algorithm described in section 3.2.2 is implemented in collision.cc and exposed to other modules with
collision.h.

The module exposes a collision structure and a collides function.

Listing 3. Collision header file

1 struct collision {

2 bool collides = false;

3 vec2d impact_point;

4 vec2d n;

5 vec2d overlap;

6 };

7

8 extern collision collides(polygon& p, polygon& q);

The collides function takes in two polygons and checks with vertex-collision algorithm whether they collide or
not. The result is return through an instance of struct collision. The bool collides and vec2d impact_point

fields is self-explanatory. The vec2d n is the normal vector that pushes polygon& p away from polygon& q. Finally,
vec2d overlap is a scalar multiplication of vec2d n. Where the latter is a normalized vector, the former repre-
sents how deep p is in q. If we push p the exact amount of overlap, then p would just be touching q with point
impact_point, and no further overlap would occur.

In reality, we do not simply push p by overlap, but we push p and q away from each other proportionally to their
mass.

Collision resolution In polygons.cc, among other functions, we apply the collision resolution, which simply uses
the physics results found in 3.3.

4.2 Optimization

In order to optimise the collision detection and to avoid having to do a check whether each vertex of every polygon
was colliding with each edge of every other polygon we decided to apply the bounding box acceleration structure.

The bounding box of an object is, in two dimensions, the rectangle that contains the object and which the sides
are aligned with axis of the coordinate system.
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Figure 4.1. Bounding box example

To get the four coordinates that compose, we just perform a linear scan through all the points that compose a
polygon, record the minimum and maximum of both they x and y coordinate.

Once those points have been found, we just perform some basic axis-aligned rectangle collision detection, which
is much less computationally expensive than checking each vertex-edge pair.

The complexity of the collision detection algorithm went from O(n2) to O(n), where n is the total number of
vertices across all polygons in the simulation.

4.3 Known issues

The simulation has one major flaw, and it is inherent to the last part of section 4.1.2 where we talk about the overlap
vector: we said that this vector allows to displace both polygons so that and the end of the collision resolution, they
are not overlapping anymore. This was done to avoid issues where the collision resolution had taken place in one
frame, but the polygons were still overlapping in the following frame, which lead to polygons getting stuck together.

The unfortunate consequence of such a decision is that, when we start playing around with the restitution co-
efficient and all the shapes start falling to the ground, the shapes are not able to rest still. Since there is gravity, at
each frame their speed get updated to simulate its effect, but since they are lying on the floor, the collision detection
algorithm kicks in right away, resulting in the polygon getting pushed completely up, since the ground has infinite
mass. This results in the polygon bouncing on the floor instead of lying down.
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5 Conclusion

The overall development of this extension was very instructive. Getting to discover some theoretical concepts, having
to understand them and then being able to apply them in the code is a very rewarding experience. The objective of
project is considered accomplished. In figure 5.1, we can see a comparison of the state of the application before and
after the extension.

(a) Original state of the simulation (b) State after the extension

Figure 5.1. Before v. After
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A Calculations

A.1 Moment of inertia of rectangle

Irect = ρ
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A.2 Moment of inertia of sub-triangle of regular polygon

Before starting the calculations, it is to be noted that according to Figure 3.3, we have that
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it will be useful to simplify the result of the integral.
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A.3 Moment of inertia of sub-triangle of arbitrary polygon

Recall equation 3.10 defines
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A.4 Solving for impulse parameter

We start with equation 3.19:

v⃗p2 · n⃗= −ev⃗p1 · n⃗�
v⃗ap2 − v⃗bp2

� · n⃗= −ev⃗p1 · n⃗�
v⃗a2 +ωa2 × r⃗ap − v⃗b2 −ωb2 × r⃗bp

� · n⃗= −ev⃗p1 · n⃗
We now expand the bracket on the left-hand side using the equations 3.20 - 3.23 and then simplify with equation

3.17.

�
v⃗a1 +

jn⃗
ma
+ωa1 +

r⃗ap × jn⃗

Ia
× r⃗ap − v⃗b1 +

jn⃗
mb
−ωb1 +

r⃗bp × jn⃗

Ib
× r⃗bp

�
· n⃗= −ev⃗p1 · n⃗

�
jn⃗
ma
+

r⃗ap × jn⃗

Ia
× r⃗ap +

jn⃗
mb
+

r⃗bp × jn⃗

Ib
× r⃗bp

�
· n⃗= −(1+ e)v⃗p1 · n⃗

Using the triple scalar product rule, we can derive that
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and therefore
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22


	Introduction
	Goal of the project
	State of the art

	Technical Background
	Original project
	Cairo

	Theoretical Background
	Moment of inertia
	Rectangle
	Regular Polygons
	Arbitrary Polygons

	Collision detection
	Separating Axis Theorem
	Vertex collisions

	Collision resolution

	Implementation
	Structure
	Polygon generator
	Collision

	Optimization
	Known issues

	Conclusion
	Calculations
	Moment of inertia of rectangle
	Moment of inertia of sub-triangle of regular polygon
	Moment of inertia of sub-triangle of arbitrary polygon
	Solving for impulse parameter


