\appendix \section{Calculations} \label{appendix:calculations} \subsection{Moment of inertia of rectangle} \begin{equation} \label{eq:rect_moment_long} \begin{split} I_{\text{rect}} & = \rho \int_{-\frac{h}{2}}^{\frac{h}{2}} \int_{-\frac{w}{2}}^{\frac{w}{2}} x^2 + y^2 \diff x \diff y \\ & = 4 \rho \int_{0}^{\frac{h}{2}} \int_{0}^{\frac{w}{2}} x^2 + y^2 \diff x \diff y \\ & = 4 \rho \int_{0}^{\frac{h}{2}} \Biggl[\frac{1}{3} x^3 + x y^2 \Biggr]_{0}^{\frac{w}{2}} dy \\ & = 4 \rho \int_{0}^{\frac{h}{2}} \frac{1}{3} \frac{w^3}{8} + \frac{w}{2} y^2 dy \\ & = 2 \rho \int_{0}^{\frac{h}{2}} \frac{w^3}{12} + w y^2 dy \\ & = 2 \rho \Biggl[ \frac{w^3}{12} y + \frac{w}{3} y^3 \Biggr]_{0}^{\frac{h}{2}} \\ & = 2 \rho \frac{w}{3} \Biggl[ \frac{w^2}{4}y + y^3 \Biggr]_{0}^{\frac{h}{2}} \\ & = 2 \rho \frac{w}{3} \left( \frac{w^2}{4}\frac{h}{2} + \frac{h^3}{8} \right) \\ & = \rho \frac{w}{3} \left( \frac{w^2}{4}h + \frac{h^3}{4} \right) \\ & = \frac{\rho wh}{12} \left( w^2 + h^3 \right) \\ \end{split} \end{equation} \newpage \subsection{Moment of inertia of sub-triangle of regular polygon} Before starting the calculations, it is to be noted that according to Figure \ref{fig:subtriangle}, we have that $$ \tan\left(\frac{\theta}{2}\right) = \frac{\frac{l}{2}}{h} = \frac{l}{2h} $$ it will be useful to simplify the result of the integral. \begin{equation} \label{eq:subtriangle_moment_long} \begin{split} I_{T} &= \rho \int_0^h\int_{-\frac{lx}{2h}}^{\frac{lx}{2h}}x^2 + y^2 \diff y\diff x\\ &= 2\rho \int_0^h\int_0^{\frac{lx}{2h}} x^2 + y^2 \diff y\diff x\\ &= 2\rho \int_0^h \Biggl[x^2y + \frac{1}{3} y^3\Biggr]_0^{\frac{lx}{2h}} \diff x\\ &= 2\rho \int_0^h x^2 \frac{lx}{2h} + \frac{1}{3} \frac{l^3x^3}{8h^3} \diff x\\ &= 2\rho \left(\frac{l}{2h} + \frac{l^3}{24h^3}\right) \int_0^h x^3 \diff x\\ &= 2\rho \left(\frac{l}{2h} + \frac{l^3}{24h^3}\right) \Biggl[ \frac{1}{4} x^4\Biggr]_0^h \\ &= \frac{h^4\rho}{2} \left(\frac{l}{2h} + \frac{l^3}{24h^3}\right) \\ &= \frac{\rho lh^3}{4} \left(1 + \frac{l^2}{12h^2}\right) \\ &= \frac{m_T h^2}{2} \left(1 + \frac{l^2}{12h^2}\right) \\ &= \frac{m_T}{2} \frac{l^2}{4 \tan^2\left(\frac{\theta}{2}\right)}\left(1 + \frac{4 \tan^2\left(\frac{\theta}{2}\right)}{12}\right) \\ &= \frac{m_Tl^2}{24} \left(1 + 3\cot^2\left(\frac{\theta}{2}\right)\right) \end{split} \end{equation} \newpage \subsection{Moment of inertia of sub-triangle of arbitrary polygon} Recall equation \ref{eq:r} defines $$ \vec r = \alpha \vv{CA} + \beta \alpha \vv{AB} $$ \begin{equation} \label{eq:subtriangle_arbitrary_moment_long} \begin{split} I_{T_i} &= \rho \int_0^1 \int_0^1 \vec r^2 hb \alpha \diff \alpha \diff \beta\\ &=\rho hb\int_0^1 \int_0^1 \left(\alpha \vv{CA} + \beta \alpha \vv{AB}\right)^2 \alpha \diff \alpha \diff \beta\\ &=\rho hb\int_0^1 \int_0^1 \left(\alpha^2 \vv{CA}^2 + 2 \alpha^2 \beta \vv{AB} \cdot \vv{CA} + \alpha^2 \beta^2 \vv{AB}^2\right) \alpha \diff \alpha \diff \beta\\ &=\rho hb\int_0^1 \int_0^1 \alpha^3 \left(\vv{CA}^2 + 2 \beta \vv{AB} \cdot \vv{CA} + \beta^2 \vv{AB}^2\right) \diff \alpha \diff \beta\\ &=\rho hb\int_0^1 \Biggl[\frac{1}{4} \alpha^4 \left(\vv{CA}^2 + 2 \beta \vv{AB} \cdot \vv{CA} + \beta^2 \vv{AB}^2\right) \Biggr]_0^1\diff \beta\\ &= \frac{\rho hb}{4}\int_0^1 \beta^2 \vv{AB}^2 + 2 \beta \vv{AB} \cdot \vv{CA} + \vv{CA}^2 \diff \beta\\ &= \frac{\rho hb}{4} \Biggl[\frac{1}{3} \beta^3 \vv{AB}^2 + \beta^2 \vv{AB} \cdot \vv{CA} + \beta\vv{CA}^2 \Biggr]_0^1\\ &= \frac{\rho hb}{4} \left(\frac{1}{3}\vv{AB}^2 + \vv{AB} \cdot \vv{CA} + \vv{CA}^2\right) \\ \end{split} \end{equation} \newpage \subsection{Solving for impulse parameter} \label{app:impulse_long} We start with equation \ref{eq:vp2n}: \begin{equation*} \begin{split} \vec v_{p2} \cdot \vec n &= - e \vec v_{p1} \cdot \vec n\\ \left(\vec v_{ap2} - \vec v_{bp2}\right)\cdot \vec n &= - e \vec v_{p1} \cdot \vec n\\ \left( \vec v_{a2} + \omega_{a2} \times \vec r_{ap} - \vec v_{b2} - \omega_{b2} \times \vec r_{bp} \right)\cdot \vec n &= - e \vec v_{p1} \cdot \vec n\\ \end{split} \end{equation*} We now expand the bracket on the left-hand side using the equations \ref{eq:va2} - \ref{eq:omega_b2} and then simplify with equation \ref{eq:vp1}. \[ \begin{split} \left( \vec v_{a1} + \frac{j\vec n}{m_a} + \omega_{a1} + \frac{\vec r_{ap} \times j\vec n}{I_a} \times \vec r_{ap} - \vec v_{b1} + \frac{j\vec n}{m_b} - \omega_{b1} + \frac{\vec r_{bp} \times j\vec n}{I_b} \times \vec r_{bp} \right)\cdot \vec n &= - e \vec v_{p1} \cdot \vec n\\ \left( \frac{j\vec n}{m_a} + \frac{\vec r_{ap} \times j\vec n}{I_a} \times \vec r_{ap} + \frac{j\vec n}{m_b} + \frac{\vec r_{bp} \times j\vec n}{I_b} \times \vec r_{bp} \right)\cdot \vec n &= - (1+e) \vec v_{p1} \cdot \vec n\\ \end{split} \] Using the triple scalar product rule, we can derive that \[ j \left( \frac{1}{m_a} + \frac{1}{m_b} + \frac{\left(\vec r_{ap} \times \vec n\right)^2}{I_a} + \frac{\left( \vec r_{bp} \times \vec n \right)^2}{I_b} \right) = -(1+e) \vec v_{p1} \cdot \vec n \] and therefore \begin{equation} j = \frac{ - (1+e) \cdot \vec v_{ap1} \cdot \vec n }{\frac{1}{m_a} + \frac{1}{m_b} + \frac{\left( \vec r_{ap} \times \vec n \right)^2}{I_a} + \frac{\left( \vec r_{bp} \times \vec n \right)^2}{I_b}} \end{equation}