From 75c272bc89e2859fa30a69df5479bfcfe51d48ec Mon Sep 17 00:00:00 2001 From: Karma Riuk Date: Thu, 22 Jun 2023 18:19:44 +0200 Subject: [PATCH] Completed the computation of the impulse parameter --- sections/appendix.tex | 30 +++++++++++++++++++++++++++++- 1 file changed, 29 insertions(+), 1 deletion(-) diff --git a/sections/appendix.tex b/sections/appendix.tex index bd039b9..e896f32 100644 --- a/sections/appendix.tex +++ b/sections/appendix.tex @@ -66,6 +66,34 @@ $$ \vec r = \alpha \vv{CA} + \beta \alpha \vv{AB} $$ \newpage \subsection{Solving for impulse parameter} \label{app:impulse_long} -[to be done :)] +We start with equation \ref{eq:vp2n}: +\begin{equation*} + \begin{split} + \vec v_{p2} \cdot \vec n &= - e \vec v_{p1} \cdot \vec n\\ + \left(\vec v_{ap2} - \vec v_{bp2}\right)\cdot \vec n &= - e \vec v_{p1} \cdot \vec n\\ + \left( \vec v_{a2} + \omega_{a2} \times \vec r_{ap} - \vec v_{b2} - \omega_{b2} \times \vec r_{bp} + \right)\cdot \vec n &= - e \vec v_{p1} \cdot \vec n\\ + \end{split} +\end{equation*} + +We now expand the bracket on the left-hand side using the equations \ref{eq:va2} +- \ref{eq:omega_b2} and then simplify with equation \ref{eq:vp1}. + +\[ + \begin{split} + \left( \vec v_{a1} + \frac{j\vec n}{m_a} + \omega_{a1} + \frac{\vec r_{ap} \times j\vec n}{I_a} \times \vec r_{ap} - \vec v_{b1} + \frac{j\vec n}{m_b} - \omega_{b1} + \frac{\vec r_{bp} \times j\vec n}{I_b} \times \vec r_{bp} \right)\cdot \vec n &= - e \vec v_{p1} \cdot \vec n\\ + \left( \frac{j\vec n}{m_a} + \frac{\vec r_{ap} \times j\vec n}{I_a} \times \vec r_{ap} + \frac{j\vec n}{m_b} + \frac{\vec r_{bp} \times j\vec n}{I_b} \times \vec r_{bp} \right)\cdot \vec n &= - (1+e) \vec v_{p1} \cdot \vec n\\ + \end{split} +\] +Using the triple scalar product rule, we can derive that +\[ + j \left( 1/m_a + 1/m_b + \frac{\left(( \vec r_{ap} \times \vec n + )^2\right)}{I_a} + \frac{\left( \vec r_{bp} \times \vec n \right)^2}{I_b} + \right) = -(1+e) \vec v_{p1} \cdot \vec n +\] +and therefore \begin{equation} + j = \frac{ - (1+e) \cdot \vec v_{ap1} \cdot \vec n }{\frac{1}{m_a} + \frac{1}{m_b} + + \frac{\left( \vec r_{ap} \times \vec n \right)^2}{I_a} + \frac{\left( \vec + r_{bp} \times \vec n \right)^2}{I_b}} \end{equation}