Universita Faculty

della of
Svizzera Informatics
italiana

Bachelor Thesis

June 13, 2023

From Flying Balls to Colliding Polygons

2D Physics Engine: Rigid Body Simulation

Arnaud Fauconnet

Abstract

Physics engines are a fun and interesting way to learn about a lot of different subjects. First the theoretical concepts,
such as the equations that dictate the motion of the objects, together with their components, need to be thoroughly
understood. Then there is the necessity of finding a way to represent all of those concepts in a given programming
language and to make them as efficient as possible so that the simulation runs fluidly. The task to be completed here
was to extend an already existing physics engine that only made circles bounce off each other. The extension was
focused on having the ability to generate some arbitrary polygons and make them bounce off each other in a phys-
ically accurate way. The main issues that rose up during the development of the extension: determining the inertia
of a arbitrary polygon, which is important for realistic impacts; having an accurate collision detection system, which
allows the engine to know when to make two polygons bounce off each other. Once those aspects were worked on
and polished, the rest of the implementation went smoothly.

Advisor
Prof. Antonio Carzaniga

Advisor’s approval (Prof. Antonio Carzaniga): Date:

Contents

(1_Introduction|

|2 Technical Background)

[2.1 Original project|

|3 Theoretical Background|

3.1 Moment of inertial. o i e e e e e e e e e e

[3.1.1 Rectangle]

[3.1.2 Regular Polygons|. e e

[3.1.3 Arbitrary Polygons| L e

2 Ilision

1

[3.2.1 Separating Axis THEOTEM|. i v ittt e e e e e e e e e e e e e e e e

13.2.2 VerteX cOllISIONS| v v v o i e e e e e e e e e

|4 Proposed solution|
5_Conclusion|
[A_Calculations|

13

14

16

1 Introduction

1.1 Goal of the project

The goal of the project was to extend an existing physics engine called "ﬂying-balls’E] by Prof. Antonio Carzaniga.
This physics engine simulated the interactions between circles in a two-dimensional space. These circles appear in
the window with a random position, together with a random initial velocity vector. The simulation would then just
calculate the position of each circle in the following frame and draw it in its new state. If two circles were to collide
with each other, the engine would detect it and make those circles bounce off each other. The resulting position and
speed would be decided by the physics equations that govern the motion of such objects.

The extension this project was asked to bring is the possibility to have more complex shapes interact with each
other, such as polygons. The polygons would have to be arbitrary and bounce off other polygons present in the scene.

1.2 State of the art

There are a lot of 2D physiques engines across the internet. The purpose of this project was not to bring something
new to the already existing landscape, but rather learn how to complete every step of the process (polygons gen-
eration, collision detection, kinematics resolution) from scratch, simply having a pre-existing way to represent the
shapes on the screen.

I The state of the project before the extension can be found at https://github.com/carzaniga/flying-balls/tree/c++-port

https://github.com/carzaniga/flying-balls/tree/c++-port

2 Technical Background

The technical background is all the research related to the programming part of this bachelor project. The program-
ming language used in this project is a mixture of C and C++, for this part, the course of Systems Programming
taught by Prof. Carzaniga during the third semester. Then came the study of the starting point of the project, which
was divided in the logic itself and the framework used to display the state of the simulation on the screen.

2.1 Original project

Before starting to write any code, it was necessary to study carefully the original project. The starting point chosen
for this specific project was the last commit on the c++-port branch. The reason for this choice is that the project
originally started fully in C (which is still the case for the main branch) and C++ offers more functionalities that help
for a smoother development process.

The life-cycle of the simulation was the typical three-step process:

1. State initiation: the state of the application is set with certain starting conditions;
2. State update: the state, at each frame, gets applied a set of rules that govern the behaviour of the application;
3. Termination: when the user stops the application, it actuates a number of cleaning up operations.

Just like any C/C++ project, the modules were split into different files, and those modules where themselves
split into header files and implementation files. The header files expose the public interface which other modules
can call to execute a determine function, whereas the implementation files, as the name suggests, offer the concrete
implementation of the aforementioned functions. The implementation files can use some statiﬂ functions that it can
use as auxiliary or utility functions. The header files usually expose the fields and methods of the class (or struct)
the module is using, if any, together with one function for each of three steps of the life-cycle mentioned above.

2.2 Cairo

Cairo is a 2D graphics library with support for multiple output devices. Cairo is designed to produce consistent
output on all output media while taking advantage of display hardware acceleration when available. The cairo API
provides operations similar to the drawing operators of PostScript and PDE Operations in cairo including stroking
and filling cubic Bézier splines, transforming and compositing translucent images, and antialiased text rendering.
All drawing operations can be transformed by any affine transformation (scale, rotation, shear, etc.). Reading the
documentatiorﬂ and more specifically the practical tutoriaﬂ was useful to understand how the library works.

The Cairo drawing model relies on a three-layer model, any drawing process takes place in three steps:

o

1. first a mask is created, which includes one or more
vector primitives or forms, i.e., circles, squares, True-
Type fonts, Bézier curves, etc;

2. then source must be defined, which may be a color,
a color gradient, a bitmap or some vector graphics,
and from the painted parts of this source a die cut is
made with the help of the above defined mask;

Source

. . . . Surface
3. finally the result is transferred to the destination or \

surface, which is provided by the back-end for the
output.

LR

bl

Figure 2.1. Cairo’s drawing modeﬂ

2static in the sense of C, i.e. visible only to the file it is declared in
3https://www.cairographics.org/documentation/

4https ://www.cairographics.org/tutorial/

>Image taken from Wikipedia

https://www.cairographics.org/documentation/
https://www.cairographics.org/tutorial/

3 Theoretical Background

The theoretical background is everything related to the physics part of the project. It covers the calculating the inertia
of different types of polygons; different algorithms to detect whether there is a collision between two polygons; the
resolution of the collision, i.e. finding the final velocity vectors and angular speed of those polygons.

3.1 Moment of inertia

The inertia of an object refers to the tendency of an object to resist a change of its state of motion or rest, it describes
how the object behaves when forces are applied to it. An object with a lot of inertia requires more force to change
its motion, either to make it move if it’s at rest or to stop it if it’s already moving. On the other hand, an object with
less inertia is easier to set in motion or bring to a halt.

The moment of inertia is similar but is used in a slightly different context, it specifically refers to the rotational in-
ertia of an object. It measures an object’s resistance to changes in its rotational motion and how its mass is distributed
with respect to is axis of rotation.

In the case of this project the axis of rotation is the one along the z-axis (perpendicular to the plane of the
simulation) and placed at the barycenter of the polygon.

The general formula for the moment of inertia is

IQzJ._r’Zp(?)d.A (3.1)

where p is the density of object Q in the point 7 across the small pieces of area A of the object.
In our case, since we are implementing a 2D engine we can use the R? coordinate systems, thus the formula

becomes
Iy = JJ p(x,y)F?dxdy

and since the requirements express that the mass of the polygons is spread uniformly across its surface, the formula
finally becomes

In=p ff x2+ y?dxdy (3.2

The bounds of the integral depend on the shape of the polygon. In the following sections, we will describe how
to compute those bounds, then we will show a different technique to compute the moment of inertia of arbitrary
polygons.

3.1.1 Rectangle

The moment of inertia of a rectangle of width w and height h with respect to the axis of rotation that passes through
its barycenter can be visualized in the Figure

—
NS

[NES
—

y (5.3

(34

(a) 2d view of rectangle with axis of rotation (b) 3d view of rectangle with axis of rotation

Figure 3.1. Representation of rectangle with respect to axis of rotation z

As figure Figure implies, the bounds of equation 3.2 are trivial to derive:

Liee = f f x*+y*dxdy = —pl (w? +h?) (3.3)
and since pwh is the density of the rectangle multiplied by its area, we can replace this term by its mass m, thus
1 2 732
Liew = —m(w? + h?) (3.4)
12
All the steps to compute equation [3.3]can be found in equation [A.1]in Appendix Al

3.1.2 Regular Polygons

A regular polygon is a shape that has sides of equal length and angles between those sides of equal measure. A
polygon of n sides can be subdivided in n congruent (and isosceles since they are all the radius of the circumscribing
circle) triangles that all meet in the polygon’s barycenter, as demonstrated in Figure [3.2b| with a pentagon.

(a) Regular polygon of 5 sides with its barycenter (b) Pentagon divided in 5 congruent triangles

Figure 3.2. Subdivision of regular polygons into congruent triangles

If we define one of the sub-triangle of the regular polygon as T, then we can find the moment of inertia I when
it is rotating about the barycenter. To find the bounds of the integral in equation [3.2] we can take the triangle T and
place it along the x-axis so that it is symmetric likes shown in figure. Assuming the side length of the polygon is [,
the height of the triangle T is h and the angle of the triangle on the barycenter of the polygon to be 8, then

y

N~

vl

N

Figure 3.3. Sub-triangle T of regular polygon

we can see the bounds for the integral

a3 see(3)
Ir=p JJ x“+y“dydx = 24 1+ 3cot 5 (3.5)

All the steps to compute equation [3.5]can be found in equation [A.2]in Appendix Al
Now that we have the moment of inertia of the sub-triangle, we can make the link to the overall polygon. Since

and the moment of inertia are additive (as long they are as they are about the same axis) we can get the moment of
inertia with

Iregular =nl T
and since the mass of the regular polygon m is the sum of the masses of the sub-triangle
m=nmy

we have that

ml? m
Iregular = g (1 + 3C0t2 (;)) (36)

3.1.3 Arbitrary Polygons

For arbitrary polygons, we are taking a slightly different approach. Using the Cartesian coordinate system to solve
the equation [3.2]revealed to be more cumbersome than useful. But similarly to regular polygons (c.f. Section[3.1.2),
we can use the additive property of the moment inertia to divide our arbitrary polygon into sub-triangles. As opposed
to regular polygons, these triangles won’t be congruent, so we can’t just get the moment of inertia of one of them
and multiply it by the number of sides, but we need to calculate them individually. So given a polygon of n sides, we
can construct n sub-triangles T;, for i = 1,...,n. So the moment of inertia I of the polygon will be

1=>1 3.7)

(a) An arbitrary 6-sided polygon (b) Arbitrary polygon divided into 6 sub-triangles

To calculate the moment of inertia I, instead of using the classical x- and y-axis as we did before, we decided
to use the edges of the triangle as axis and therefore express what we need to integrate in function of those as can
be seen in Figure

Al

H

Figure 3.5. Sub-triangle of arbitrary polygon

In Figure - 3.5, C represent the barycenter of the polygon (as is shown in Figure [3.4b). The axis we are going to
integrate on are CA and AB. We can now define

— — — —
CP,=aCA, CP,=aCB, VYaec[0,1] (3.8)

and
— —
P,Q =P, P,, VB €[0,1]

From [3.8] it quickly follows that

P —
PIPZ = OLAB
therefore
—> —
P,Q =faAB (3.9)

Finally, if we put together equations[3.8|and [3.9} we have that
I — —
7 =CP, + P,Q = aCA+ paAB (3.10)

Now we got the first part equation To find the d.A, we just need to get the area of the square that contains
Q in Figure Since ||A_B>|| represents the base of the triangle T;, we can define

—
b= |AB|

we consequently have that
dA=badfhda (3.11)

where h = ||C_)H|| is the height of triangle. We can now assemble and
ot hb (1=, — — —
I =pf f #2hbadadp = pT(gABZ+AB-CA+ CAZ) (3.12)
0 Jo
Since pThb is the mass of the triangle we can write the result as
mr, 1—)2 — = ==y
Iy = - §AB +AB-CA+CA (3.13)

All the steps to compute equation can be found in equation[A.3]in Appendix [Al
Now that we have the moment of inertia of the sub-triangle, we can make the link to the overall polygon.

e
arbltrary Z Z (PP1+1 + CP PP1+1 +CP) (314)

where, P, ; = P, in the case of i = n.

3.2 Collision detection

Collision detection, as the name suggests, are the algorithms used to detect whether two polygons are colliding.

The result of this procedure must be an impact point and a normal vector, that will then be used for the collision
resolution [3.3]

3.2.1 Separating Axis Theorem

This algorithm was the first one studied for this project and was inspired by the works of David Eberly [[1]]. The
separating axis theorem (SAT) states that if you can draw a line between two convex objects, they do not overlap.
We will call this line a separating line. More technically, two convex shapes do not overlap if there exists an axis onto
which the two objects’ projections do not overlap. We’ll call this axis a separating axis. This concept can be visualized

in Figure

Figure 3.6. SAT: Separating axis (A) vs non-separating axis (B), with separating line (C)

As we can see in Figure the axis B show that the projections of the both polygons overlap, but we were able
to find an axis A where this is not the case. As soon as we find an axis for which the projections do not overlap, it
means that the polygons are not colliding. For 2D objects, we only need to consider the axes that are orthogonal to
each edge. In Figure only two of those axes are shown for better readability, but they would be 7, one for each
edge.

To move (or push) one polygon away from the other, we also need to find a vector that, when added to the
polygons position, will make the shapes not overlap. We want the minimum displacement possible, We’ll call this
vector the minimum push vector (MPV). For 2-dimensional polygons, this vector will lie in some of the orthogonal
axes.

Figure 3.7. SAT: Minimum push vector ; on axis defined by 3;, orthogonal to edge e;

The candidate MPVs ¥; are the vectors that define the axis 3; (orthogonal to edge e;), with ||5;|| = 1, multiplied
by the minimum overlap between the two polygons, as shown in[3.7 The final MPV is simply the ¥; with the smallest
norm.

Pitfalls of SAT The issue with the SAT algorithm is that although it is good to find whether two polygons are colliding
and the MPV] it isn’t trivial to gather the point of impact, i.e. the vertex that is penetrating the other polygon. It is
doable, but during the implementation, it came with some caveats that introduced some bugs, so we decided to
switch strategy and go with an algorithm of our own. Moreover, SAT only supports convex polygons, which limits
the original objective of the project, which was to have any arbitrary polygon.

3.2.2 Vertex collisions

The solution that was adopted for the project, after trying SAT, was a more intuitive one, developed by Prof. Carzaniga.
The idea is simple: check if a vertex of a polygon is colliding with an edge of another polygon.

Figure 3.8. Vertex-edge collision between polygons A and B

If we have a polygon defined as a set of points P C R?, we define a vertex as a pair of segments (m, m)
To check if vertex V; of polygon A is inside polygon B, we just check if the both segments V,_, V; and V.., V; intersect
edge e;. If such is the case, we know that V; is inside, and we can use it as impact point. We can now take the vector
perpendicular to the edge e; and normalize it, which is the normal we need for the collision resolution.

Edge cases With this approach (and many other collision detection algorithms), it is easy to see that the case
described in the Figure is only a general one. It will ultimately happen most often, but there are especially two
edge cases that are note-worthy and occurred during the simulation a greater number of times than expected.

Parallel collision Parallel collision occur when two edge collide with each other, an example can be seen in Figure
This collision does not get detected by the vertex-edge detection method because the edge of A parallel to the
edge of B do not collide, since they are parallel.

Figure 3.9. Parallel edges collision between polygons A and B

To determine if polygon A is having a parallel collision with polygon B we check if only the segment V,_;V,
intersects with edge e; and if the segment V,,,V; is parallel to edge e;.

To find the impact point, we first need to find the minimum overlap between the parallel edges. We can calculate
it by projecting the points that make the parallel edges of A and B on the axis generated by the edge of A (c.f. Figure
3.10).Finally, the impact point, is the midpoint of the said overlap.

(a) Edge fully contained by other edge (b) Edge partly contained by other edge

Figure 3.10. Parallel collision, finding the impact point

The normal vector is given in the same way as the vertex-edge collision, i.e. taking the perpendicular vector to e;
and normalizing it.

Vertex on vertex collision These collision happen when, at the moment of the frame, two polygons are "inside
each other", i.e. they both have have a vertex present inside the area of the other polygon, as shown in Figure[3.11]

10

Figure 3.11. Vertex on vertex collision between polygons A and B

Two problems arise when trying to deal with this edge case:

1. determining which of the two vertices we chose as the impact point;

2. determining what normal vector.

For point [1} it actually doesn’t really matter. What is represented in Figures[3.8}i3.11]| are an over exaggeration
of what happens in the engine. Since the time delta between two frames is so small, the collisions look more like
what is in Figure where the concerned vertices are located practically in the same spot, and the difference is
negligible. So for convenience with the general vertex-edge case, we will take the vertex of A being inside B as the
impact point.

For point [2| that’s where the real problem of the edge case occur. We are unable to determine what vectors is
supposed to be the normal vector. One might say "just take the vector that goes from the vertex of A (that is inside B)
to the one of B (that is inside A)", but it doesn’t work out in general. It works (kind of) when we have non-rotating
objects going straight at each other, but as soon as you have rotational motion, this reasoning collapses. The solution
that was decided (together with advisor Prof. Carzaniga) was to treat the collision as a vertex-edge collision, and
choosing whatever the first edge of B comes up first in the calculations as the edge to find the normal. The results
look realistic enough to be accepted.

(a) Realistic vertex-edge collision (b) Realistic edge-edge collision (c) Realistic vertex-vertex collision

Figure 3.12. Realistic collisions

3.3 Collision resolution

The collision resolution is the last step in the processing of the collision. Algorithmically, it is much less heavy than
collision detection, since, once the simulation has two colliding polygons, a point of impact and a normal vectoy, it’s
just a case of applying the rigid body physics formulas to the polygons that are colliding. This part has been helped
a lot by the works of Erik Neumann [22]] and Chris Hecker [J3]].

11

Figure 3.13. Collision resolution between polygons A and B

m,, m, = mass of the bodies A and B

7, = distance vector from center of mass of body
A to point P

7y, = distance vector from center of mass of body
A to point P

W41, Wy = initial angular velocity of bodies A, B
Wgq, Wy = final angular velocity of bodies A, B

- -

V.1, V1 = initial velocities of center of mass bodies
AB

V49, Vpy = final velocities of center of mass bodies
A B

12

Variable definition Before getting into any maths, let’s define some variables that we are going to use

-

Vgp1 = initial velocity of impact point P on body A
Vpp1 = initial velocity of impact point P on body B
v,, = initial relative velocity of impact points on

2
body A, B

V,, = final relative velocity of impact points on

body A, B
71 = normal vector

e = elastic coefficient (0 = inelastic, 1 = perfectly
elastic)

4 Proposed solution

13

5 Conclusion

14

References

[1] David Eberly. Intersection of convex objects: The method of separating axes. WWW page, pages 2-3, 2001.
[2] Erik Neumann. Rigid body collisions. WWW page: myPhysicsLab.com, 2003.

[3] Chris Hecker. Physics part 3: Collision response. Game Developer Magazine, 1997.

15

A Calculations

Moment of inertia of rectangle

12 (A1)

3\ 4 4
pwh 5 .3
=13 (W +h)

16

Moment of inertia of sub-triangle of regular polygon Before starting the calculations, it is to be noted that
according to Figure we have that
n(2) = L
2 h 2h

it will be useful to simplify the result of the integral.

hor g
Iszff x%+y?dydx
o J-z
0

h
h 1 2

=2pf [x2y+§y3] dx
0 0

h

Ix 113x°

:2 227 __d
pJOth+3 8h3

Lo (",
p(zh 24h3)f0 e
(o BA1LT] (A.2)
=2\ o)| 37),
h4 3
Ml 7
2 \2hn " 24k
plR® 12
= 1
4 (e
myh? 12
= 1+
2 (12h2

_my B)(1+4tan2(§))

12

Ix
2h
f x?+y?dydx
0
Ix

17

Moment of inertia of sub-triangle of arbitrary polygon Recall equation defines

N — —
7 = aCA+ faAB

1 1
f o® (CA? +2pAB - CA+ p2AB?)da dp
0

. (A.3)

hbJ
0
1
1
=phbf [Za4(5)42+2ﬁA—B)-a>4+/32A—B>2)} dap
0 0
1
=—J B2AB? + 2BAB - CA+ CA*dp
0
1
1
|:§ﬁ3A_B>2+/52A_B)-aZ\+/5a2}
0

1oy — = =
EAB +AB-CA+ CA

18

	Introduction
	Goal of the project
	State of the art

	Technical Background
	Original project
	Cairo

	Theoretical Background
	Moment of inertia
	Rectangle
	Regular Polygons
	Arbitrary Polygons

	Collision detection
	Separating Axis Theorem
	Vertex collisions

	Collision resolution

	Proposed solution
	Conclusion
	Calculations

